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Abstract: In the context of multidimensional poverty measurement, it seems plausible

to assume that when individuals are deprived in some dimensions and non-deprived in the

remaining ones, the latter can be allowed to play a non-trivial role in the assessment of those

individuals�poverty levels. Yet, this simple and attractive property is violated by virtually

all multidimensional poverty indices proposed in the literature so far because they stick to the

so-called �Strong Focus�axiom. This paper characterizes a class of multidimensional poverty

indices that allows for certain trade-o¤s between deprived and non-deprived attributes when

measuring individuals�deprivation. The empirical results based on �Demographic and Health

Surveys� from 54 countries suggest that our assessments of multidimensional poverty can

di¤er dramatically when the overly restrictive Strong Focus is abandoned in favor of weaker

versions of the axiom.
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1. Introduction

At the beginning of the 21st century, poverty reduction continues to be one of the great-

est challenges faced by policy makers in most parts of the world. Not surprisingly, United

Nations�Millennium Development Goal #1 prompts countries to halve the proportion of

population living in poverty by the year 2015. Therefore, the targeting of poor individuals

and the measurement of poverty levels is a high-priority topic of research with enormous

policy implications. In the last years it is becoming increasingly acknowledged that poverty

is a multidimensional phenomenon, and many authors have insisted on the necessity of de�n-

ing multidimensional poverty rather than relying on income or consumption expenditures

alone (see, for instance, Bourguignon and Chakravarty 2003:26). This line of research is

particularly pertinent at this moment given the fact that international institutions like the

European Commission or the United Nations are implementing the multidimensional ap-

proach to complement o¢ cial income poverty measures. Following the de�nition adopted by

the Europe 2020 strategy, Eurostat publishes since 2009 the values of the multidimensional

AROPE index (people at-risk-of-poverty rate or social exclusion), and since 2010 the United

Nations�Human Development Report publishes the values of the so-called �Multidimensional

Poverty Index�for over a hundred countries all over the world (see Alkire and Santos 2010).

These publications have renewed the interest and invigorated the debate on multidimen-

sional poverty measurement (see Ravallion (2011), Alkire, Foster and Santos (2011), Silber

(2011)). This paper contributes to this debate.

After the seminal contribution of Sen (1976), the measurement of poverty is commonly

divided in two steps: the �identi�cation step�(i.e.: decide who is �poor�and who is not1

) and the �aggregation step�(i.e.: summarizing information about �the poor�into a single

1
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number). For the sake of clarity, it might be useful to think of the �aggregation step�as a

two-stage procedure. Initially, a �deprivation assessment�stage determines how poor �poor�

individuals are. After that, the �aggregation step�summarizes individuals�poverty levels into

a single number. This subtle but important distinction is motivated by the fact that in a

multiattribute framework, the problem of assessing individuals�deprivation levels (i.e.: the

�rst stage in the �aggregation step�) is a non-trivial matter which, as will be shown below,

has received insu¢ cient attention from the literature and will be the main concern of this

paper.

Once the identi�cation step is over, one must typically assess the extent of poverty of those

individuals that are deemed �poor�. In this respect, there are di¤erent axioms regulating and

mediating the extent to which individuals�poverty levels are a¤ected by their achievements

in the di¤erent dimensions that are being taken into account. Among these, the so-called

�Focus Axiom�can be considered as one of the cornerstones of poverty measurement. In

its single-dimensional version, the axiom precludes the possibility that incomes above the

poverty line a¤ect our assessment of the poverty levels in a given population. When it comes

to de�ne that axiom in a multidimensional setting there are basically two alternatives with

essentially di¤erent ethical implications: the Strong and Weak Focus axioms. Assuming

While the identi�cation step is relatively straightforward in the single dimensional case (an income poverty
line de�nes who is poor and who is not), the problem becomes more complicated in a multidimensional
framework, and di¤erent well-known approaches have been proposed in the literature. Assuming one is able
to de�ne dimension-speci�c poverty thresholds that allow determining whether individuals are deprived or
not in the corresponding dimensions, one can de�ne the following identi�cation approaches. According to
the �union approach�, an individual should be labelled as �poor�if s/he is deprived in at least one dimension.
At the other extreme, the �intersection approach�states that an individual is �poor� if s/he is deprived in
all dimensions simultaneously. Since these extreme approaches are likely to over-estimate and sub-estimate
respectively the set of individuals that should be considered as �poor� (particularly when the number of
dimensions that are being considered is large), Alkire and Foster (2011) proposed a counting approach
based on Atkinson (2003) suggesting that an individual is �poor�when s/he is deprived in an intermediate
number of dimensions that has to be decided by the analyst. Lastly, another identi�cation method is the
so-called �poverty frontier�approach, which basically combines multidimensional distributions to generate a
single-dimensional well-being distribution that is later analyzed with traditional income poverty tools.
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one is able to de�ne dimension-speci�c poverty thresholds to determine whether individuals

are deprived or not in the corresponding dimensions, the Strong Focus axiom demands

that poverty measures should be insensitive to any change occurring above the di¤erent

poverty lines. This axiom rules out any possible trade-o¤ between achievements below and

above the poverty lines for any given individual. Even if it is a quite stringent requirement

that is insensitive to many situations in which the over-achievements in certain dimensions

could somehow compensate the low achievements in other dimensions, up to now it has

been imposed on virtually all poverty measures proposed in the literature (e.g.: Tsui 2002,

Bourguignon and Chakravarty 2003, Chakravarty et al. 2008, Bossert et al. 2013, Alkire

and Foster 2011). On the other hand, Weak Focus is a less stringent requirement stating

that a poverty measure should be insensitive to increases of non-poor individuals�attributes

only, therefore leaving room for certain trade-o¤s between achievements above and below

the poverty lines of poor individuals. In this context, Dutta et al. (2003:205) support the

reasonableness of that axiom when they state :�One can argue that there is no reason why,

other things remaining the same, a change in the level of over-achievement of an individual in

terms of an attribute should not be allowed to a¤ect the assessment of the overall deprivation

of that individual�. More generally, the existence of trade-o¤s between attributes in the

assessment of deprivation levels has been a topic of major concern since the times of the

�Basic Needs�approach (see Streeten 1977, Hicks and Streeten 1979) up until the present

day (see, among many others, Dowrick et al. 2003 or Ravallion 2012).

The fact that virtually all multidimensional poverty measures proposed in the literature

so far satisfy the Strong Focus axiom is truly remarkable, since there are many circumstances

in which one might want to allow over-achievements to exert some kind of in�uence when

assessing individuals�overall deprivation levels. Consider a stylized setting in which poverty
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Figure 1: Iso-poverty contours under the Strong Focus axiom for the case k = 2.

levels are assessed through the dimensions of health and income. Using the union approach,

an individual A with poor health and an income on the corresponding poverty line (typically

a very low income) can be reasonably considered as a �poor�person. Another individual B

with the same poor health but with a moderate income level could also be considered to be

poor according to the union approach but not as poor as individual A, because her higher

income level might allow her to somehow compensate for her poor health status and enjoy a

better standard of living. Interestingly, since virtually all multidimensional poverty indices

that have been proposed in the literature so far are insensitive to this kind of interaction

between dimensions, they would �somewhat surprisingly�consider individual A to be exactly

as poor as individual B (see Figure 1)2 .

The main goal of this paper is to propose a new conceptualization of multidimensional

poverty in such a way that achievements above the poverty line are allowed to play a non-

2 The only exception to that rule we are aware of is that of Lugo and Maasoumi (2008). However, the indices
proposed in that paper have an important limitation that will be explained in the discussion section.
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trivial role in the assessment of individuals�deprivation levels. More speci�cally, we will

generalize the existing multidimensional poverty measures in such a way that they will be

allowed to violate the Strong Focus axiom while satisfying its Weak version. In terms of

the stylized setting presented in Figure 1, we want to extend the family of multidimensional

poverty measures in such a way that the poverty level of individual B can be considered to

be the same as the poverty level of an individual C which is situated somewhere to the right

of individual A, or �if deemed appropriate�as the poverty level of individual A itself.

While there are many compelling reasons to allow over-achievements playing a non-

trivial role in the assessment of individuals� deprivation levels, it is not straightforward

to specify the extent to which a certain attribute should be traded-o¤ by another one.

Among other things, this would require determining empirically the extent to which these

attributes are complements or substitutes, an issue for which there does not seem to be a

standard procedure (Alkire and Foster 2011:486). In other words: there are widely varying

degrees in which the Strong Focus axiom can be relaxed in favor of its weak version. In

face of such a daunting task, a decision maker might be uncertain and could prefer to

introduce a certain degree of underspeci�cation: rather than arbitrarily �xing the values of

parameters governing trade-o¤s between deprived and non-deprived attributes, she might

prefer to let them freely move within certain regions of those parameters�space denoted as

�admissible sets�(call them �)3 . This paper introduces di¤erent tools to assess the extent

to which the set of admissible rankings derived from the choice of � di¤ers with respect

to the �status quo�ranking derived from the Strong Focus axiom �so the reliability and

robustness of the later can be fully explored. In particular, we will investigate the pace

3 Similar parameter underspeci�cation techniques to explore the robustness of results have also been recently
used in the literature of well-being measurement (e.g.: Saisana et al. 2005, Cherchye et al 2008, Permanyer
2011a,b, Foster, McGillivray and Seth 2013).
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at which the dissimilarity between the rankings associated to the Strong and Weak Focus

assumptions increases as we gradually enlarge the size of the admissible sets (i.e.: as we

increasingly weaken the Strong Focus axiom). Interestingly, the methodology presented

in this paper allows modelling di¤erent degrees of complementarity / substitutability for

alternative couples of attributes �an improvement with respect to the current state of the

literature, that requires attributes to be all complements or all substitutes with a strength

that is uniform across all pairs.

Using the same 54 Demographic and Health Surveys that were used in the calculation

of UNDP�s Multidimensional Poverty Index, we show an application of our methodology to

test the robustness of �Strong Focus poverty rankings�to alternative implementations of the

Weak Focus axiom. Inter alia, the results shown in this paper suggest that our assessments

of multidimensional poverty levels can di¤er dramatically when making some room for trade-

o¤s between deprived and non-deprived attributes.

The paper is structured as follows. Section 2 will present some basic de�nitions and

notation that will be used throughout the paper. Our methodology and its axiomatic char-

acterization will be presented in section 3. Section 4 presents some sensitivity analysis tools

that will be used in the empirical application. In section 5 we turn to our empirical appli-

cation and in section 6 we present some substantive comments on the implications of our

results. The proofs are relegated to the Appendix.

2. Preliminary notation and de�nitions

We introduce some basic de�nitions that will be used throughout the paper. Rq;Rq+;R
q
++

are the q�dimensional Euclidean space and its nonnegative and positive counterparts re-

spectively. We consider k well-being dimensions (which might be referred to as �attributes�
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or, simply, �dimensions�, and which are labelled as f1; : : : ; kg =: K) and n individuals. The

achievement of individual i in attribute j will be denoted by xij. From now on, we impose

that xij � 0, an almost universal assumption in both unidimensional and multidimensional

poverty measurement4 . The vector xi = (xi1; : : : ; xik) 2 Rk+ will be called achievement vec-

tor for individual i. Given the fact that we are considering one achievement vector for each

individual, we will de�ne an achievement matrix as a n�k matrix with non-negative entries.

For each attribute j we consider a poverty threshold zj > 0 representing a minimum

quantity of that attribute that is needed for subsistence �which in this paper we will consider

as exogenously given. In this context, we say that individual i is deprived in attribute

j (or that j is a meagre attribute for individual i) whenever xij � zj . We will denote

by z = (z1; : : : ; zk) 2 Rk++ the vector of poverty thresholds. Hence, we say that a given

achievement vector xi does belong to a p�dimensional poverty space (with p 2 N; 0 � p � k)

if the number of attributes falling below the poverty thresholds is exactly p. For instance,

in the case of two attributes, one can �nd 0, 1 or 2-dimensional poverty spaces, indicating

that an individual can be deprived in none, one or two dimensions respectively.

Whenever an individual is deprived in a given attribute there are several ways of capturing

the extent of that deprivation, usually referred to as �deprivation shortfall�or �deprivation

gap�. The di¤erent multidimensional poverty indices introduced in the literature so far use

alternative functional forms to capture those gaps. These are shown in Table 1 together

with the corresponding multidimensional poverty indices that are derived from them.

4 Tsui (2002:82) concludes that multidimensional poverty measurement is severely limited when some of the
arguments can take negative values.
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Paper Notation Formula Range MD Poverty Index

Tsui (2002) gT1ij zj=Minfxij; zjg RT1= [1;+1) P T1 = 1
n

nX
i=1

"
kY
j=1

�
gT1ij
��j � 1#

Tsui (2002) gT2ij ln(zj=Minfxij; zjg) RT2= [0;+1) P T2 = 1
n

nX
i=1

kX
j=1

�jg
T2
ij

Tsui (2002) gT3ij zj�Minfxij; zjg RT3= [0;+1) P T3 = 1
n

nX
i=1

 
kY
j=1

erjg
T3
ij � 1

!

Tsui (2002) gT4ij zj�Minfxij; zjg RT4= [0;+1) P T4 = 1
n

nX
i=1

kX
j=1

cjg
T4
ij

B&C (2003) gBCij Max
n
zj�xij
zj

; 0
o

RBC= [0; 1] PBC = 1
n

nX
i=1

"
kX
j=1

wj
�
gBCij

��#�=�

C&D&S (2008) gWij ln(zj=Minfxij; zjg) RW= [0;+1) PW = 1
n

nX
i=1

kX
j=1

gWij

A&F (2011) gAFij Max
n
zj�xij
zj

; 0
o

RAF= [0; 1] PAF = 1
nk

X
i2P

kX
j=1

�
gAFij

��
Table 1. Deprivation shortfalls with their functional forms, ranges and correspond-

ing multidimensional poverty measures. B&C stands for Bourguignon and Chakravarty;

C&D&S for Chakravarty, Deutsch and Silber and A&F for Alkire and Foster. The parame-

ters appearing in the table must satisfy the following restrictions (see the original papers

for details): �j � 08j and �j chosen so that the function �jy��jj ; yj 2 (0; 1] is convex with

respect to (y1; : : : ; yk); �j � 08j; rj � 08j with at least one rj strictly positive and rj chosen

so that �jerj(zj�xij) is convex; cj � 08j with at least one cj strictly positive; wj � 08j,

�; � > 0;� � 0: In the Alkire and Foster index, P stands for the set of individuals labeled as

�poor�according to the number of dimensions in which they are deprived.

As shown in Table 1, all deprivation gaps are de�ned as

gij = f(xij; zj) (1)
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for some function f : R+ � R++ ! R. Recall that the range of values of the deprivation

gaps gij and the corresponding multidimensional poverty measures are quite di¤erent. From

now onwards, when we refer to any of those possible ranges we will simply write R (that is:

R 2 f[1;+1); [0;+1); [0; 1]g). Once the functional form of the deprivation gap f(:; :) has

been chosen, we de�ne

gmin := min
xij�0

f(xij; zj) (2)

as the value of the smallest possible deprivation gap (which, by construction, is the same

for any dimension j 2 f1; : : : ; kg). In other words, gmin is the smallest possible value in the

range of admissible values for the function f . As can be seen in Table 1 we have that gmin = 0

for all poverty measures presented in the literature except for the �rst index presented by

Tsui (2002), where gT1min = 1.

We will denote by G a generic n � k matrix with the values of the deprivation gaps

gij 2 R �referred to as deprivation matrix. The set of n � k deprivation matrices will be

denoted as Gn�k and we will write G =
[
n2N

[
k2N

Gn�k. As can be seen in Table 1, all existing

multidimensional poverty indices are de�ned as functions P : G ! R that for a given

deprivation matrix determine the level of poverty in that distribution. With this notation,

the indices in Table 1 can be written as P = P (G), so they are not making room for an

eventual role of over-achievements in the assessment of poverty levels. A consequence of

imposing the Strong Focus axiom is that the iso-poverty contours in p�dimensional poverty

spaces (p < k) will be parallel to the k � p axes where the corresponding attributes are

non-meagre. Figure 1 �which is an adaptation of Figure 3 in Bourguignon and Chakravarty

(2003) �illustrates this fact for the case where k = 2: under Strong Focus, individuals A and

B are located in the same iso-poverty contour even if both are equally deprived in dimension

1 and individual B is an over-achiever in dimension 2.
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Since we aim to explore the role that achievements above the poverty line can have

on our multidimensional poverty assessments, we need to introduce some assumptions and

de�nitions. Our initial assumption is that there is an upper bound for each attribute, that is:

there is a maximum achievement level for each attribute. In formal terms, we are assuming

that for each attribute j there exists a constant Uj such that xij � Uj <1 for all xij. This

assumption is very reasonable for most well-being dimensions that are typically incorporated

in multidimensional poverty assessments (see section 5). In most cases, the task of �nding

a reasonable bound Uj above which further increases do not make a sensible di¤erence in

poverty assessments does not seem to be unsurmountable. For instance, the censoring of

distributions is a common practice in several analysis (e.g.: many multidimensional indices

censor some of their components in order to avoid the distortion that the inclusion of extreme

values would entail on the corresponding normalized distributions �this is the case of the

well-known Human Development Index, the Environmental Sustainability Index or theWorld

Economic Forum Gender Gap Index, to mention a few).

For any xij � 0 and any zj > 0 we de�ne the corresponding �excess gap�as

eij :=

8><>:
xij�zj
Uj�zj if xij � zj

0 otherwise

9>=>;
Recall that eij compares the observed excess from the poverty line with respect the

maximal over-achievement that is feasible under the domain constraints5 . By de�nition

eij 2 [0; 1]; when xij = zj, eij = 0 (there is no over-achievement when we are at the poverty

line) and when xij = Uj, eij = 1 (over-achievement is maximal when xij reaches the upper

bound). Figure 2 illustrates graphically the values of the deprivation gaps gBCij = gAFij 2 [0; 1]

used in Bourguignon and Chakravarty (2003) and Alkire and Foster (2011) and the excess
5 If it is deemed more appropriate, the excess gaps can also be de�ned in non-linear ways. Such changes
would not alter the characterization results presented in this paper.
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Figure 2: Graph of the poverty shortfalls gBCij and the excess gaps eij for the di¤erent values
of xij.

gaps eij for the di¤erent values of xij. For any individual (say, i), we de�ne the corresponding

deprivation and excess vectors as gi := (gi1; : : : ; gik) and ei := (ei1; : : : ; eik) respectively.

The arguments of the multidimensional poverty measures proposed in this paper will

consist of ordered pairs of n� k matrices (G;E), where the elements of the �rst and second

matrices are deprivation and excess gaps respectively and where the following restriction

holds: whenever gij > gmin, then eij = 0 (that is: if individual i is deprived in attribute j,

then the corresponding excess gap must equal zero). If we denote the set of such ordered

pairs of matrices as (G � E)n�k, we can write G � E =
[
n2N

[
k2N

(G � E)n�k.

De�nition 1. A multidimensional poverty index P is a non-trivial function P : G�E !

R.

This de�nition is extremely general and undemanding and it includes all multidimensional

poverty indices presented in the literature (shown in Table 1) as particular cases. In the

next section we are going to impose some �reasonable�restrictions (i.e.: axioms) on P so

as to pin down an explicit functional form that can be useful for empirical analysis.
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To conclude this section, we introduce some notation that will be used to present the

axioms in a clear cut way. The set of n � k deprivation and excess matrices whose rows

are the same will be denoted as Gn�kS and En�kS respectively. Let K = f1; : : : ; kg be the

set of attributes / dimensions we are taking into account. Then we will denote by GH the

submatrix of G 2 Gn�kS containing the individuals�deprivations for the attributes in a non-

empty H � K, and by GH
C
the submatrix of G 2 Gn�kS containing the remaining attributes.

For any n� k matrix with real entries M , any attribute j 2 K and any constant a 2 R, we

will denote by (M�j; a) the n � k matrix that is exactly as M except for column j, which

has been substituted by a column where all its components are equal to a.

3. Characterization results

The �rst axiom we introduce in this paper �Subgroup Decomposability �restricts the class

of multidimensional poverty indices we are going to consider. That axiom states that if a

population is partitioned into several subgroups with respect to a certain characteristic (e.g.:

sex, age, place of residence, etc.) then overall poverty is the population weighted average of

the subgroup poverty levels. In formal terms

Subgroup Decomposability. Let (G1; E1) 2 Gn1�k; : : : ; (Gp; Ep) 2 Gnp�k be a list of de-

privation and excess matrices for p disjoint subpopulations. Then, poverty on the overall

population can be written as P (G1; : : : ; Gp; E1; : : : ; Ep) =
P

l
nl
n
P (Gl; El), where n =

P
l nl.

This property allows identifying subgroups where poverty is particularly high and evaluat-

ing their contribution to overall poverty levels. Therefore, it is an extremely useful property

in applied analysis, where policy-makers need to target and monitor the most vulnerable

groups. In fact, Subgroup Decomposability is such an intuitive and useful property that it

has been imposed on all multidimensional poverty indices presented in the literature so far

13



(see Table 1). A trivial implication of this axiom is that a poverty index P can be written

as

P =
1

n

nX
i=1

p(gi; ei)

where p(gi; ei) can be interpreted as the level of multidimensional poverty associated

with individual i given the achievement and poverty thresholds vectors xi and z.

Continuity. P is a continuous function in its arguments.

This is an almost universal assumption satis�ed by most poverty measures and, broadly

speaking, most socio-economic indices. It requires that small changes in the achievements of

individuals produce small changes in the corresponding deprivations. Stated otherwise: the

deprivation level does not abruptly change as individuals�achievements are slightly altered.

Among other things, this property ensures that deprivation levels will not be dramatically

a¤ected by measurement errors. Despite its appeal and intuitiveness, there are at least two

well-known poverty indices that do not satisfy Continuity. One of them is the Headcount

Ratio6 and the other one is the multidimensional poverty indexM� proposed by Alkire and

Foster (2011) which was used in the de�nition of UNDP�s Multidimensional Poverty Index

(MPI)7 .

6 In the income poverty framework, the headcount ratio is the proportion of individuals below the poverty
line (i.e.: H := q=n, where q is the number of poor individuals). As pointed out by Sen (1976), H is
a discontinuous index: slight changes in incomes below the poverty line can lead to sudden jumps in the
poverty measure.
7 Alkire and Foster (2011) identify poor individuals using the so-called dual cuto¤ approach. One form of
cuto¤ is used within each dimension to identify whether a person is deprived in that dimension, and a second
cuto¤across dimensions is used to identify the poor by counting the dimensions in which a person is deprived.
However this introduces a discontinuity in the measure around the cuto¤ points that might go against our
intuitions in certain cases. One of the consequences of this discontinuity is that certain regressive Pigou-
Dalton transfers might decrease poverty rather than increasing it, a somewhat disturbing result. Consider
the following illustrative example in a two-member society with k = 4; q = 3 (i.e.: an individual must
be deprived in at least three attributes to be considered as poor); zi = 0:3 for all i 2 f1; 2; 3; 4g and
x1 = (0:1; 0:1; 0:11; 0:1);x2 = (0:1; 0:1; 0:29; 1). Suppose there is a regressive Pigou-Dalton transfer where
individual 1 transfers 0.01 units of the third attribute to individual 2. After the transfer one has that
x01 = (0:1; 0:1; 0:1; 0:1);x02 = (0:1; 0:1; 0:3; 1), so the second individual is no longer poor. According to the
Alkire-Foster class of poverty measures M�, poverty has decreased after the transfer.

14



Homotheticity. For any (G1; E); (G2; E) 2 (G � E)n�k and any � 2 R one has that

P (G1; E) � P (G2; E) , P (�G1; E) � P (�G2; E), where �G1; �G2 are the ��scalings of

deprivation matrices G1; G2.

Consider two moments in time: t1 and t2. In t1 we compare the multidimensional poverty

levels of two equal-sized populations that have the same matrix of excess gaps. In t2, the

deprivation gaps are scaled up or down by the same amount, all else remaining the same.

Homotheticity states that under such change, the ranking of these two societies in terms of

multidimensional poverty should remain the same. Stated otherwise: a multidimensional

poverty ordering must be preserved when the corresponding deprivation gaps are changed

proportionally. Once again, this is a highly plausible axiom that is satis�ed by all multidi-

mensional poverty indices introduced in the literature (see Table 1).

Weak Dimension Separability. For all sets of attributes H � K and for all F;G; bF ; bG 2
Gn�kS , E 2 En�kS such that FH = GH ; bFH = bGH ; FHC

= bFHC
and GH

C
= bGHC

; P (F;E) �

P (G;E), P ( bF ;E) � P ( bG;E):
Consider a hypothetical scenario in which we compare equal-sized populations where

all individuals are identical in the sense that they all have the same deprivation and excess

vectors. Imagine that after a period of time, the deprivations felt by individuals with respect

to some attributes do not change, while the rest of the deprivations vary (with the excess

vectors remaining the same). In this scenario, it is reasonable to expect that the levels of

multidimensional deprivation should depend on the variation of the attributes that have

changed, but not on the others that have remained constant. This is whatWeak Dimension

Separability imposes, demanding that the ranking of the two populations in times t1 and t2

is independent of the level of deprivation in the dimensions that do not change over time.
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Monotonicity on Deprivation Gaps. Let (F;E); (G;E) 2 (G � E)n�k: If F 6= G and

fij � gij for all i 2 f1; : : : ; ng; j 2 f1; : : : ; kg, then P (F;E) > P (G;E).

This assumption simply states that a multidimensional poverty index should be increasing

in its deprivation arguments, that is: if the deprivation felt by any individual in any attribute

increases and all else remains the same, overall deprivation should increase as well.

Independence. Consider any (F;U); (G; V ) 2 (G�E)n�k, any attribute j 2 f1; : : : ; kg and

any a 2 [0; 1]. If P ((F�j; gmin); (U�j; 0)) = P ((G�j; gmin); (V
�j; 0)), then P ((F�j; gmin); (U�j; a)) =

P ((G�j; gmin); (V
�j; a)).

This property demands the following. Assume we are comparing two equal-sized popula-

tions in time t1 where all individuals�achivement level in attribute j equals the corresponding

poverty line zj and assume that the overall deprivation for both populations is exactly the

same. Imagine that after a period of time, all individuals�achievement level in attribute j is

increased by the same amount above the poverty line and all else remains the same. Then it

is reasonable to expect that the overall deprivation for both populations will continue to be

the same (even if it has changed with respect to its original level in time t1). In other words,

Independence requires that when equals are added to equals, the results that are obtained

should also be equal.

Theorem 1. If a multidimensional poverty index P satis�es Subgroup Decomposabil-

ity, Continuity, Homotheticity, Weak Dimension Separability, Monotonicity on Deprivation

Gaps and Independence, then it can be written as

P (G;E) =
1

n

nX
i=1

 

0@" kX
j=1

�
gij

kQ
l=1

'jl(eil)

��#1=�1A (3)
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where  is a continuous increasing function, 'jl(:) are some continuous functions and

� > 0.

Proof : See the Appendix.

Remark 1. The multidimensional poverty index shown in equation (3) is a generalization

of all multidimensional poverty indices presented in Table 1 (i.e.: choosing the appropriate

functions  ; 'jl and parameter � in equation (3), we can obtain all indices shown in Table 1)
8

. For the sake of simplicity, in the rest of the paper we will make the following assumption.

Consistency Condition. When imposing the Strong Focus axiom to the poverty index

P (G;E) shown in equation (3), we obtain the poverty indices shown in Table 1.

The sole purpose of this assumption is to restrict our attention to generalized versions of

the multidimensional poverty indices presented in Table 1. Even if it is an ad hoc restriction

that precludes the existence of other functional forms not encapsulated in Table 1, it is

su¢ cient for the main purpose of this paper, to wit, explore the possibility of allowing over-

achievements to play a non-trivial role in the assessment of individuals�multidimensional

poverty levels. In future research, it will be interesting to relax this assumption to enrich

even further the class of multidimensional poverty indices satisfying the Weak Focus axiom.

Remark 2. As is shown in Theorem 1, in our extended framework each individuals�

deprivation gap for a given attribute (gij) is �corrected�(i.e.: modi�ed) by a certain factor

that depends on the extent to which that individual is non-deprived on the other attributes.

The extent of that correction is mediated by the continuous functions 'jl : [0; 1]! R, which
8 PT2; PT4; PW are obtained from equation (3) when  (x) = x; � = 1. PT3 is obtained when  (x) =
ex � 1; � = 1. PT1 is obtained as a limiting case from equation (3) when  (x) = x � 1; � ! 0: PBC is
obtained when  (x) = x� . Finally, PAF is obtained when  (x) = x� and � = �: In all cases, it is needed
that the functions 'jl(x) = cjl for certain constants cjl.
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from now onwards will be referred to as correction functions. The values of (1�'jl(eil))100

could be interpreted as the percent reduction of the deprivation gap gij when we take into

account the excess gap in attribute l (eil). Under Strong Focus one would have that 'jl(eil) =

1; so (1�'jl(eil))100 = 0; and there is a 0% reduction of the corresponding deprivation gap

gij.

Imposing some restrictions, the functional form of the multidimensional poverty index

has been narrowed down considerably. However, more axioms are necessary to pin down an

explicit functional form for the correction functions f'jlg so that empirical applications are

possible.

Monotonicity on Excess Gaps. Let (G;U); (G; V ) 2 (G � E)n�k: If U 6= V and uij � vij

for all i 2 f1; : : : ; ng; j 2 f1; : : : ; kg, then P (G;U) � P (G; V ).

This property ensures that when the achievement level in a non-meagre attribute is

increased even further, then the corresponding overall deprivation level does not increase.

This is the basic intuition that motivates this paper: increases in non-meagre attributes are

allowed to play a non-trivial role in the assessment of individuals�deprivation levels.

Uniform Scale Invariance. Let q 2 f1; : : : ; kg = K and let �i = f(�il)gl2K ; "i = f("il)gl2K

be two excess vectors such that �il = "il for all l 2 Knfqg. De�ne �ti = f(�til)gl2K such

that �til = �il for all l 2 Knfqg; �tiq = t�iq and de�ne "ti = f("til)gl2K such that "til = "il for

all l 2 Knfqg; "tiq = t"iq, with t > 0 in such a way that t�iq; t"iq 2 [0; 1]. If one de�nes

U; V; U t; V t 2 En�kS as the excess matrices where all rows are the same corresponding to the

excess vectors �i; "i; �ti and "
t
i respectively, then �(P (G;U

t))��(P (G; V t)) = h(�(P (G;U))�

�(P (G; V )); t) for any G 2 Gn�kS , where h : R � R+ ! R is a function and � : R ! R is an

increasing function.
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This is also a standard property used in utility or poverty measurement (see, for instance,

Eichhorn and Gleissner (1988:24), or Chakraborty, Pattanaik and Xu (2008)). Suppose that

we compare the individual poverty levels between two poor persons i1 and i2 where the

achievement vectors xi1 ;xi2 are exactly the same except for their value in dimension q, where

both individuals are non-poor (xi1q; xi2q > zq). Imagine that there is an equiproportionate

increase in the excess gaps in dimension q for both individuals. Then, up to a monotonic

transformation, the di¤erence between the individual poverty levels in the new situation will

change by an amount that will depend exclusively on the initial di¤erence in poverty levels

and the proportionality factor by which the achievement level in dimension q was increased.

Theorem 2. Under the Consistency condition, a multidimensional poverty index P as

shown in equation (3) satis�es Monotonicity on Excess Gaps and Uniform Scale Invariance

if and only if the corresponding correction functions 'jl can be written as

'jl(eil) = 1 + (�jl � 1)e


il (4)

where �jl 2 (0; 1] and 
 > 0:

Proof : See the Appendix.

Remark 3. Applying Theorems 1 and 2, we obtain generalized versions of all multidi-

mensional poverty measures introduced in the literature (see Table 1): it su¢ ces to �correct�

the deprivation gaps gij multiplying by the functions 'jl(:) shown in equation (4). These new

indices are allowed to violate the Strong Focus axiom and satisfy its weaker version. There-

fore, we are not proposing a speci�c multidimensional poverty index but a generalization of

all the indices presented in Table 1.

Remark 4. Parameter 
 measures the lack of sensitivity of the multidimensional poverty

index to achievements above the poverty line. The larger the value of 
, the smaller the
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sensitivity to such over-achievements. In the limit, as 
 ! 1; the poverty index P (G;E)

satis�es the Strong Focus axiom.

Remark 5. Recall that, since 'jl(1) = �jl, the values of (1 � �jl)100 represent the

maximal percentual reduction of the deprivation gap gij that is possible when the excess gap

in attribute l reaches its maximum level (eil = 1). By de�nition, the smaller the values of

the �jl, the larger the extent to which deprivations in dimension j can be compensated by

over-achievements in dimension l. Therefore, the values of the �jl are highly related to the

degree of complementarity / substitutability between attributes j and l.

Remark 6. Given the fact that larger values of k might lead to problems of over-

parametrization9 , we propose di¤erent simpli�cation strategies. The �rst one is stated

as follows: since the f�jlg can be thought of as proxies of the degree of complementarity

/ substitutability between attributes j and l (i.e.: the lambdas are de�ned for couples of

attributes), then it is reasonable to assume that �jl = �lj for all j; l 2 f1; : : : ; kg. This

halves the number of parameters that should be taken into account. The second approach

avoids taking a particular stance in the di¢ cult choice of the f�jlg by allowing for parameter

underspeci�cation, an issue to which we now turn.

4. Sensitivity Analysis

The multidimensional poverty indices introduced in this paper require specifying the values

of the parameters f�jlg that measure the extent to which an achievement level in a given

dimension above the corresponding poverty threshold can compensate and lower individual�s

deprivation gaps in other dimensions. Since these parameters can be thought of as proxies

9 In multidimensional poverty analysis, each additional dimension typically involves the di¢ cult choice of
several parameters. Moreover, for a given k there are k(k � 1) lambdas f�jlg that must be chosen.
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of the degree of complementarity / substitutability between couples of attributes, in case of

strong complementarity the corresponding �jl should be close to 1, and large substitutability

levels should lead to values close to 0. Unfortunately, there does not seem to be a standard

procedure for determining the extent of complementarity and substitutability across poverty

dimensions (Alkire and Foster 2011: 486). Therefore, it is not entirely clear how these values

should be chosen in an empirical exercise: while the choice of �jl = 1 for all j 6= l seems to

be unduly restrictive, there are little clues on how to determine their speci�c value. In face

of such a daunting task, a decision-maker might be uncertain and prefer to introduce some

degree of parameter underspeci�cation.

4.1 The two country case

Imagine we want to compare the poverty levels in two countries A and B taking into account

k = 3 dimensions10 (as will be the case in the empirical section). Given the fact that

the values of P (GA; EA); P (GB; EB) will be partly determined by the speci�c choice of the

parameters �jl for j; l 2 f1; 2; 3g; j 6= l, the least compromising alternative is to consider what

happens when all possible values of the �jl are taken into account. As suggested in Remark

6, in order to simplify our analysis we will assume that �jl = �lj for all j; l 2 f1; 2; 3g; j 6= l,

so in the rest of the paper we will be dealing with three parameters only: �12; �13 and �23. In

that case, one can construct a diagram like the one shown in Figure 3. The surface inside the

unit cube [0; 1]3 represents the set of triples (�12; �13; �23) for which P (GA; EA) = P (GB; EB).

The set of points inside the unit cube on one side of the surface represent the set of triples

(�12; �13; �23) for which P (GA; EA) > P (GB; EB) and the points on the other side of the

surface yield the opposite ranking. Recall that the vertex (�12; �13; �23) = (1; 1; 1) represents

10The ideas introduced in this paper can be applied as well for any k > 3. For the sake of simplicity, however,
we will focus on the case k = 3.
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(1,1,0)

( ) ( )BBAA EGPEGP ,, >( ) ( )BBAA EGPEGP ,, <

(1,1,1)

(0,1,0)(1,0,0)

(0,1,1)
(1,0,1)

(0,0,1)

Figure 3: Comparing P (GA; EA); P (GB; EB) in the (�12; �13; �23)-space.

the Strong Focus axiom in which no trade-o¤s between meagre and non-meagre attributes

are allowed. On the other hand, the vertex (�12; �13; �23) = (0; 0; 0) represents the opposite

extreme case in which any poverty shortfall in one dimension can be eventually compensated

by a su¢ ciently large excess in the other dimension. By means of this kind of diagram it is

possible to have a more complete picture of the extent to which multidimensional poverty

is larger in one country than another and to understand the role played by the trade-o¤s

between meagre and non-meagre attributes.

4.2 The multiple country case

When the previous analysis has to be extended for the case of many countries (say, M),

matters can become more complicated because diagrams like the one shown in Figure (3)
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can be particularly di¢ cult to read (there might be as many asM(M �1)=2 surfaces to plot

in the unit cube). In order to overcome this problem, in this paper we suggest the following

alternative approach: for any � := (�12; �13; �23) 2 [0; 1]3, we compare the M�country

ranking that is obtained from that speci�c choice of the lambdas with the M�country

ranking that is obtained when choosing (��12; �
�
13; �

�
23) = (1; 1; 1) = 1 (that is: with the

ranking that would be observed under the Strong Focus axiom). This way, we are able to

assess the extent to which the �standard / benchmark / reference�ranking that is obtained

under Strong Focus is sensitive to alternative speci�cations of the parameters governing the

trade-o¤s between meagre and non-meagre attributes. In order to measure the distance

between two rankings R;R0 of M countries we will use the following function inspired in the

work of D�Agostino and Dardanoni (2009):

d(R;R0) =
1

(M3 �M) =3

MP
i=1

(Ri �R0i)
2
: (5)

In equation (5), R = (R1; : : : ; RM); R0 = (R01; : : : ; R
0
M) with Ri; R

0
i 2 f1; : : : ;Mg are the

two rankings of the M countries we are taking into account. The denominator is used to

normalize the index between zero and one: the former value is observed whenever Ri = R0i8i

and the latter is observed whenever we compare a given ranking R = (R1; : : : ; RM) with its

opposite ranking R0 = (R01; : : : ; R
0
M) with R

0
i = M � Ri + 1. The function d(R;R0) satis�es

various reasonable properties that provide a nice axiomatic characterization11 . Interestingly,

the ranking distance function d is equivalent �up to a monotonic transformation�to the well-

known Spearman index of ordinal association �: one has that d = (1��)=2. Therefore, we can

further interpret the values of d in terms of �. For instance, when d = 0; � = 1 (two perfectly

correlated rankings are at a distance 0) and when d = 1; � = �1 (two opposite rankings
11These properties are: Monotonicity, Subgroup Consistency, Atomic Monotonicity, Archimedean Property
and Minimal Inversion; see D�Agostino and Dardanoni (2009) for details.
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are at the maximal possible distance and have the smallest rank correlation). Finally, when

d = 0:5; � = 0 (the distance between two uncorrelated rankings is 0:5).

From now on, for a given � 2 [0; 1]3 we will denote by R� the M�country ranking that

is derived from the values of �. Therefore, the ranking that is derived under Strong Focus

(i.e.: for � = 1) will be denoted as R1. In order to assess the sensitivity of the country

ranking that is derived under Strong Focus to the choice of alternative �, in this paper we

will use a function � : [0; 1]3 ! [0; 1] that for each � computes the value �(�) := d(R�; R1).

In the empirical section of this paper, we will plot the values of � associated to the di¤erent

multidimensional poverty measures shown in Table 1 applied to a set of M = 54 countries.

4.2.1 Uncertainty and Robustness

While extremely rich and informative, the use of the ranking distance function �(�) =

d(R�; R1) has some limitations. To start with, the plot of a three-dimensional function is

di¢ cult to visualize, a problem that can be particularly acute when one decides to consider

multidimensional poverty measures de�ned for more than three attributes. Second, �(�) is a

purely descriptive tool that does not take into account the fact that some triples � 2 [0; 1]3

are more important than others when investigating the robustness of the ranking R1. If a

decision-maker is uncertain about the appropriateness of the �status quo�ranking derived

from the choice � = 1, she might prefer to introduce some underspeci�cation and consider

instead a neighboring set of admissible parameters � � [0; 1]3 around it (that is, with 1 2�).

In this framework, the larger the uncertainty regarding the appropriateness of � = 1, the

larger the size of � should be. At the same time, larger sets of admissible parameters �

are more likely to include triples � with larger values of the ranking distance function �(�).

In this context, a decision maker might be interested in assessing the pace at which the
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dissimilarity between R1 and a ranking derived from � 2� increases as the set of admissible

parameters � that she is willing to accept becomes gradually large. In order to formalize

these ideas, we introduce the following notation.

De�nition 2. Let fv1; : : : ;v8g be the set of vertices of the unit cube [0; 1]3. For any

r 2 [0; 1], de�ne vi(r) := rvi + (1 � r)1. Then �(r) := C(fvi(r)g1�i�8); where C(S) is the

convex hull of a set S in R3.

The sets �(r) correspond to the homothetic expansions of the unit cube [0; 1]3 with

the vertex 1 as the center of homothety12 . Clearly, �(r1) � �(r2) whenever r1 < r2.

Moreover, �(0) = f1g and �(1) = [0; 1]3. From now onwards, we will assume that when a

decision maker is uncertain about the appropriateness of the ranking R1, she might prefer

to consider a set of lambdas belonging to some �(r); r 2 [0; 1], where r should be interpreted

as the corresponding degree of the decision maker�s uncertainty. Whenever a given set

of admissible parameters �(r) is considered, the values of �(�) (with � 2�(r)) follow a

certain distribution with a density function � denoted as f(r) � that will be of interest

to the analyst. In particular, it will be interesting to describe f(r) via the corresponding

percentiles pi(r) := pi(f(r))8i 2 f1; : : : 100g. By de�nition, the pi(r) are bounded between 0

and 1. Finally, it is possible to plot the functions pi(r) for all r 2 [0; 1]. This gives a picture

of the extent to which the set of admissible rankings is di¤erent with respect to R1 as we

consider larger levels of uncertainty.

12Foster, McGillivray and Seth (2013) followed a relatively similar approach in their attempt to assess the
robustness of composite index rankings to the choice of alternative weighting schemes belonging to the
simplex f(w1; : : : ; wk) 2 Rkjwi � 0;

P
i wi = 1g.
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5. Empirical illustration

In 2010, the United Nations Development Program (UNDP) presented the values of the

so-called �Multidimensional Poverty Index�(henceforth MPI), which was used to rank more

than a hundred countries all over the world. Three main datasets were used to compute

the MPI: the Demographic and Health Surveys (henceforth DHS), the Multiple Indicators

Cluster Survey and the World Health Survey. The MPI was constructed using the method-

ology proposed by Alkire and Foster (2011), which �like all multidimensional poverty indices

presented in the literature so far�satis�es the Strong Focus axiom. In this section, we will

investigate the robustness of di¤erent multidimensional poverty indices inspired in UNDP�s

MPI when relaxing the Strong Focus assumption in favor of the weak version of the axiom13

. More speci�cally, we will use the indices P (G;E) characterized in Theorems 1 and 2, which

generalize the existing multidimensional poverty measures presented in the literature so far

(recall Remark 3). For that purpose, we will work with the same countries appearing in the

o¢ cial UNDP�s MPI list but restricting our attention to those countries whose MPI values

were estimated using the Demographic and Health Surveys (totalling M = 54 countries14 ).

This way, we avoid the comparability problems that might arise if we used alternative data

sources (a problem that actually a­ icts the o¢ cial MPI values).

13It should be highlighted that the multidimensional poverty indices presented in this section are not exactly
the same as the o¢ cial UNDP�s MPI �even if some of them are quite similar, see Figure (4) below�so their
values are not strictly comparable. However, this is not a problem for the main goal of this section, to wit,
test the sensitivity of poverty rankings when the Strong Focus axiom is relaxed in favor of Weak Focus.
14The 54 countries included in the dataset and the year in which the DHS was taken are: Albania (2009),
Armenia (2005), Azerbaijan (2006), Bangladesh (2007), Benin (2006), Bolivia (2008), Cambodia (2005),
Cameroon (2004), Colombia (2010), Congo (2009), Democratic Republic of the Congo (2007), Côte d�Ivoire
(2005), Dominican Republic (2007), Egypt (2008), Ethiopia (2005), Gabon (2000), Ghana (2008), Guinea
(2005), Guyana (2005), Haiti (2006), Honduras (2006), India (2005), Indonesia (2007), Jordan (2009), Kenya
(2009), Lesotho (2009), Liberia (2007), Madagascar (2009), Malawi (2004), Maldives (2009), Mali (2006),
Republic of Moldova (2005), Mozambique (2009), Namibia (2007), Nepal (2006), Nicaragua (2006), Niger
(2006), Nigeria (2008), Pakistan (2007), Peru (2004), Philippines (2008), Rwanda (2005), Sao Tome and
Principe (2009), Senegal (2005), Sierra Leone (2008), Swaziland (2007), Tanzania (2008), Timor-Leste (2009),
Turkey (2003), Uganda (2006), Ukraine (2007), Viet Nam (2002), Zambia (2007) and Zimbabwe (2006).
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The DHS are nationally representative surveys with large sample sizes and questionnaires

that are virtually identical across time and countries. In most surveys, households are

selected based on a standard strati�ed and clustered design, and, within the household, one

woman, aged 15-49, is selected at random as the focus of the interview. In addition, all living

children up to a given age (usually 60 months, but sometimes 36 months) born to that woman

are weighed and measured. These surveys have been widely used by di¤erent researchers

to measure poverty levels in developing countries (see, for instance, Sahn and Stifel 2000 or

Duclos, Sahn and Younger 2006). Following the approach used in the construction of the

MPI, the basic unit of our analysis will be the household (totalling 876; 742 observations

among the 54 surveys). Even if this choice is not ideal and is somewhat driven by data

constraints, it is intuitive and facilitates comparisons with the original MPI.

5.1 De�nition of dimensions, indicators and thresholds

There are many potential well-being variables available in the DHS that can be used to

measure deprivation in a multiattribute framework. Mimicking the methodology used in the

de�nition of UNDP�s MPI, here we concentrate on three dimensions: Education, Health and

Standard of Living.

In the education dimension we will use the indicator �Years of Schooling�, which acts as

a proxy for the level of knowledge and understanding of household members. While this

indicator has di¤erent shortcomings (e.g.: does not capture quality of education or level of

knowledge attained), it is a robust and widely available indicator that provides the closest

feasible approximation to levels of education for household members. In order to measure

households�deprivation in terms of �Years of Schooling�, we will focus on the highest value

of that variable among the corresponding household members. While other approaches
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could have been easily implemented as well (e.g.: averaging the variable across household

members), we have preferred to use the highest value of the variable as representative of the

household education status for the following reasons. As Basu and Foster (1998) �and many

others after them�suggest, all household members bene�t from the abilities of an educated

person in the household, regardless of each person�s actual level of education. In addition,

this has been the approach followed in the construction of MPI�s education component (in

that context, all household members are considered non-deprived if at least one person has

a high level of education). In order to determine whether a given household is deprived

or not in the education dimension, we set the poverty threshold at �ve years of education

(i.e.: z1 = 5). This is the threshold that has been used in the construction of the MPI.

Analogously, recent studies without literacy information have used this threshold as a proxy

to classify individuals as literates or illiterates (e.g.: Grimm et al. 2008). The upper bound

of this variable �which is needed to compute the excess gaps eij� is set at 20 years (i.e.:

U1 = 20).

As acknowledged by di¤erent authors, health is the most di¢ cult dimension to measure

in the assessment of multidimensional poverty because of the lack of appropriate data. Mim-

icking the MPI methodology, we use information on the nutritional status of individuals to

estimate deprivations in the health dimension. Adults who are malnourished are suscepti-

ble of di¤erent health disorders, they are less able to concentrate and learn and may not

perform as well in work (Alkire and Santos 2010:12). The indicator that will be used to

assess individuals�malnutrition is the Body Mass Index (BMI), which is de�ned as the ratio

between weight (measured in kilograms) and the square of height (measured in meters)15 .

15As is known, the MPI also includes information on child nutrition. However, that information is missing
in many households and its inclusion renders comparisons between households with and without children
more problematic on conceptual grounds. For these reasons, we have preferred not to include that indicator
in our assessment of multidimensional poverty.
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As is well known, this is an imperfect indicator with some limitations: (i) It does not re�ect

micronutrient de�ciencies, (ii) Individuals�nutritional status is not always related to poverty,

it might be in�uenced by alimentary disorders, fashion norms or recent illnesses. Like the

MPI, we do not consider the problem of obesity. When it comes to measure households�

deprivation in terms of malnutrition, we have chosen the lowest BMI among all household

members16 . This criterion is analogous to the one used in the construction of the MPI �

where all household members are considered to be deprived in nutrition if at least one under-

nourished person is observed in the household. It is a widely common practice to establish

the BMI threshold to determine whether individuals are malnourished or not at a value of

18:5 (that is: z2 = 18:5). At the other extreme, we have truncated the BMI distribution

from above at the value of 25. When the BMI is larger than 25 individuals are considered

to be overweight, so larger values of the index are not expected to be bene�cial for their

well-being. Therefore, U2 is set at 25.

Lastly, our indices also include a standard of living component. Since the DHS were not

designed for economic analysis, there are no data on income or expenditures�the standard

money metric measures of standard of living. Despite this drawback, the DHS do contain

information on household assets that can be employed to represent an alternative to a money

metric. In the absence of income or expenditure data, we derive a welfare index constructed

from the households�asset information available in the DHS. Asset indices have been widely

used in the literature (e.g.: Filmer and Pritchett 2001, Sahn and Stifel 2000, 2003, Grimm et

al 2008, Harttgen and Klasen 2011) and their advantages and disadvantages are well known

(Filmer and Scott 2012 provide an excellent survey in this regard)17 . Asset indices are

16Again, it could a priori be possible to implement other summary measures like some BMI average across
household members. However, the compensations involved in this averaging process might fail to detect
malnourished individuals.
17On the negative side, di¤erent authors have emphasized that: (i) Being discrete functions, there might
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de�ned as a weighted linear sum
P

iwiahi, where wi is the weight attached to asset �i�and

ahi 2 f0; 1g refer to the absence or presence of asset �i�in household �h�. In this paper, the

asset index has been constructed with 13 items18 and with equal weights (wi = 1=138i).

While some authors use Factor Analysis or Principal Components techniques to derive the

corresponding weights (e.g.: Filmer and Pritchett 2001, Sahn and Stifel 2000, 2003, Harttgen

and Klasen 2011), we have preferred to keep the equal weighting scheme as already done by

many others (e.g.: Montgomery et al 2000, Case, Paxson and Ableidinger 2004, Hohmann

and Garenne 2010, Permanyer 2013) for the sake of simplicity and transparency. In addition,

this is also the approach implicitly followed in the construction of the MPI. In the related

literature, it is common to draw the poverty threshold for the standard of living distribution

at the 25th; 33rd or the 40th percentiles (e.g.: Sahn and Stifel 2000, 2003). In this paper we

report the values corresponding to the 33rd percentile (the conclusions remain essentially the

same for the other cuto¤s). The upper bound of the standard of living distribution that is

needed to compute the excess gaps equals U3 = 1 (this is the maximal possible value of the

asset index for a household owning all assets included in our list).

be the risk that observations are clustered around certain values, therefore posing a challenge to the task
of estimating the underlying welfare distribution; (ii) The list of assets included in these indices typically
refers to basic commodities that do not cover many of the goods and services that are generally available
to high-income households; (iii) Asset indices have been criticized because they might not correctly capture
di¤erences between urban and rural areas. On the positive side, it is acknowledged that: (i) The reporting
of household assets is less vulnerable to measurement errors than the reporting of income or expenditures;
(ii) Asset indices might be a better proxy for long-term living standards than current income because they
are less vulnerable to economic shocks and �uctuations over time than income or expenditure. To sum up,
even if their values should be taken with caution, asset indices seem a viable �though imperfect �way of
assessing material welfare.
18The list of assets used in this paper is the following: 1. Electricity: The household has electricity;
2. Sanitation (toilet facility): The household sanitation facility is improved and not shared with other
households; 3. Water: the household does have access to clean drinking water, or clean water is less than
30 minutes walking from home; 4. Floor: The household has no dirt, sand or dung �oor; 5. Roof: The
household has �nished roo�ng; 6. Walls: The household has �nished walls; 7. Cooking fuel: The household
does not cook with dung, wood or charcoal; 8. Radio: The household has a Radio; 9. TV: The household has
a TV; 10. Telephone: The household has a Telephone; 11. Refrigerator: The household has a Refrigerator;
12. Bike: The household has a Bike; 13. Motor vehicle: The household has a Motor vehicle (Motorbike,
Car, Truck).

30



Summing up, the indicators used in the construction of our multidimensional poverty

indices are essentially the same as those used in the MPI. However, while the MPI is con-

structed following an �ordinal approach�(that is: what matters when computing its values

is whether households are deprived or non-deprived in the corresponding dimensions), the

indices presented here need cardinal information to compute deprivation and excess gaps in

a meaningful way.

5.2 Empirical results

Before carrying out our tests to assess the robustness of MPI-like rankings, we have per-

formed a validation check using external data to assess the quality and soundness of the

54-country dataset we have created for the empirical section of this paper. More speci�cally,

we have compared the o¢ cial UNDP�s 2011 MPI ranking �restricted to the 54 countries

whose MPI values where estimated using DHS �with the ranking we have obtained using

the Alkire and Foster (2011) index19 applied to the dataset described in the previous sec-

tion (see Figure (4)). As can be seen, both measures tend to rank countries in a strongly

linear fashion: the rank correlation coe¢ cient equals 0:96 and the ranking distance function

d(R;R0) corresponding to those rankings (see equation (5)) is as low as 0:02. Therefore, we

can be reasonably con�dent that the dataset we will be working with tends to rank coun-

tries in a very similar way as the o¢ cial MPI does whenever we restrict our attention to the

Strong Focus axiom.

We will now present results regarding the robustness of the 54-country rankings derived

from the multidimensional poverty measures shown in Table 1 (i.e.: PAF ; PBC ; P T1; P T2; P T3

and P T4) to alternative speci�cations of the Weak Focus axiom20 . For that purpose, we

19We have used the PAF index (see Table 1) with � = 2 and using the union approach as identi�cation
method.
20Recall that the index PW is essentially the same as PT2, so it has not been included in the list.
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Figure 4: Comparison of country rankings arising from the values of UNDP�s MPI and PAF

with � = 2 (see Table 1) for 54 countries with Demographic and Health Surveys. Country
labels follow the ISO-3166 coding scheme. The solid line line is the 45o equality line drawn
for comparative purposes. Source: authors�calculations using UNDP and DHS data.
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will work with the generalized version of those measures characterized in Theorems 1 and 2

(i.e.: the corresponding P (G;E) indices shown in equations (3) and (4) with the appropriate

functions  ; 'jl and parameter ��see footnote #9) and allow the parameters governing trade-

o¤s between meagre and non-meagre attributes (i.e.: the lambdas � =(�12; �13; �23)) to take

any value within their domain. In this context, �12 (resp. �13 and �23) corresponds to

the parameter governing trade-o¤s between education and health (resp. trade-o¤s between

education and wealth and trade-o¤s between health and wealth). As explained above, the

corresponding �reference�or �status quo�ranking is the one that is obtained from the values

of the indices PAF ; PBC ; P T1; P T2; P T3 and P T4 themselves (that is: the indices satisfying

the Strong Focus axiom, which correspond to the choice of � = (1; 1; 1)). For each of the

multidimensional poverty indices considered in this paper, Figure (5) plots the values of

the corresponding �reference ranking distance function��(�) for a wide range of values of

� 2 [0; 1]3. More speci�cally, we plot the values of the corresponding �(�) for all possible

values of �13 and �23 whenever �12 2 f0; 0:2; 0:4; 0:6; 0:8; 1g. In order to interpret this graph,

recall that whenever the values of �(�) are �around�0:5 (as a rule of thumb: between 0:4

and 0:6), the Strong Focus ranking and the Weak Focus ranking derived from the values of

� are essentially uncorrelated. When this happens, the rankings derived from both axioms

look as if they were independently generated.

As can be seen in Figure (5), the multidimensional poverty rankings that are obtained

from the Weak Focus axiom are, in general terms, quite di¤erent with respect to the reference

rankings derived from Strong Focus. As expected, the values of �(�) tend to be lower for

the layers �12 = 0 or �12 = 0:2 (that is, when �12 is �small�) for all multidimensional

poverty indices studied in this paper. However, even in those layers the values of �(�) are

considerably large in a close vicinity of � = (1; 1; 1). These results suggest that even when
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very small room for interaction is allowed between deprived and non-deprived attributes,

our assessments of multidimensional poverty can di¤er to a large extent.

Interestingly, the patterns of variation of the �(�) function within the unit cube are

highly non-linear, so they are quite di¢ cult to describe. This is particularly the case for

the poverty measure P (G;E) associated to P T1: in that case the values of �(�) vary wildly

in a quite unpredictable way. In fact, the highest reported value of �(�) (= 0:68) has been

observed for that speci�c index. At the other extreme, we �nd other indices for which the

behavior of �(�) looks somewhat more smooth and parsimonious. This is the case for the

poverty measures P (G;E) associated to P T2; P T3 and, to a lesser extent, PBC . Somewhere in

between, we can �nd the poverty measures P (G;E) associated to PAF and P T4. In general,

the highly complex behavior of �(�) might be attributable to the multiplicative functional

form of the correction functions accompanying the deprivation gaps gij of equation (3).

Inspecting Figure (5), one might want to investigate the behavior of �(�) �near�� = 1

in more detail. A decision maker who is uncertain about the appropriateness of the Strong

Focus axiom might prefer to allow for a certain degree of underspeci�cation and let the

lambdas free within the admissible sets �(r) � [0; 1]3 around 1 2�(r) (where the values of r

are interpreted as the degree of the decision maker�s uncertainty). In Figure (6), we plot the

percentiles pi(r) of the �(�) distribution when the values of � are restricted to �(r) for the

di¤erent values of r 2 [0; 1] and for each the di¤erent multidimensional poverty measures

investigated in this paper. As expected, virtually all percentiles pi(r) increase as we increase

the values of r. In other words: as we gradually enlarge the size of admissible sets �(r),

the set of admissible rankings becomes increasingly di¤erent with respect to the status quo

ranking that prevails under the Strong Focus axiom21 . As can be seen, the values reached
21Note that, a priori, this should not always be necessarily the case.
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Figure 5: Values of �(�) for the multidimensional poverty indices P (G;E) characterized
in this paper. Each column is labeled according to the speci�c poverty index for which
the corresponding �(�) values are calculated. Each row corresponds to di¤erent values of
�12 2 f0; 0:2; 0:4; 0:6; 0:8; 1g. The squares within this graph have been plotted using a linear
interpolation function over a regular grid of 51� 51 test points for the di¤erent values of �13
and �23 between 0 and 1. Source: Author�s calculations using DHS data.

35



by those distributions is remarkably high. For the cases of P T1, P T3 and P T4 the median

p50(r) soon approaches �and in some cases crosses �the threshold of 0:4, signifying that

for those indices most admissible rankings are virtually uncorrelated with respect to the

reference ranking R1. For PAF , PBC and P T2 the p50(r) values tend to be smaller but are

substantially large as well (in many cases hovering between 0:3 and 0:4).

Of particular interest is the pace at which the percentiles pi(r) increase with r, specially

when r is close to 0 � as this measures the sensitivity of the reference ranking R1 to a

slight weakening of the Strong Focus axiom. Most percentiles shown in Figure (6) tend

to increase at a marginally decreasing pace, but the degree of concavity is quite di¤erent

across indices. At one extreme we have the case of P T2: for values of r between 0 and 0:1,

the corresponding percentiles barely increase above 0, and when r goes beyond 0:1, those

percentiles tend to slowly increase at a fairly constant pace. At the other extreme, we �nd

the cases of P T1; P T3 and P T4: for those indices, slight increases of r lead to remarkable

jumps in the corresponding percentile functions, which seem to stabilize when r goes beyond

0:2. Therefore, the rankings derived from these indices are extremely sensitive to the values

of � even in a close vicinity of 1. In between, we �nd the cases of PAF and PBC , which also

increase at a marginally decreasing pace.

Summing up, the di¤erent poverty measures studied here react in a quite di¤erent way

when over-achievements are allowed to intervene in the assessment of individuals�poverty

levels. While some of these measures are much more sensitive than others, all of them bring

to light a completely di¤erent assessment of the extent of multidimensional poverty when

we gradually abandon the rigidity of the Strong Focus axiom.
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Figure 6: Percentiles of the �(�) distribution when � 2 �(r)8r 2 [0; 1] corresponding to
the multidimensional poverty indices P (G;E) characterized in this paper. The black solid
lines represent the values of the 50th percentile p50(r). The black (resp. grey) dashed
lines represent the 25th and 75th percentiles (resp. the 100th percentile). Source: Author�s
calculations using DHS data.
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6. Discussion and concluding remarks

The Focus axiom is one of the cornerstones upon which traditional income poverty measures

are based. It basically states that an income poverty measure should not be sensitive to

the distribution of incomes above the poverty line. However, after the recent introduction

of the multidimensional setting with di¤erent dimensions and poverty lines, this axiom can

be stated in di¤erent ways. A strong version of this axiom (known as Strong Focus) states

that a poverty measure should be insensitive to the increase of non-deprived attributes of

any individual. A weaker version of this axiom (known as Weak Focus) states that, after

identifying who is poor and who is not, a poverty measure should be insensitive to the in-

crease of attributes of non-poor individuals only. Interestingly, all multidimensional poverty

measures introduced in the literature so far satisfy the stronger version of the axiom, but this

seems to be unduly restrictive since it precludes the possibility that over-achievements in

non-deprived dimensions can in�uence and somehow compensate deprivation levels in other

dimensions for those individuals identi�ed as �poor�. In this paper we have argued that this is

an interesting and plausible possibility that can have potentially relevant implications for the

conceptualization and measurement of multidimensional poverty, so it should be seriously

taken into account when evaluating the poverty levels in di¤erent societies.

The main reason why di¤erent researchers are reluctant to relax the Strong Focus axiom

is that they do not want an increase in non-deprived attributes only to be able to pull in-

dividuals out of poverty (see Alkire and Foster 2011:481). In line with the stylized setting

shown in Figure 1, these researchers reasonably claim that an individual D with very good

health but with no income whatsoever (e.g.: an old street beggar who is a pavement dweller)

should be considered as �poor�besides his high life expectancy. As a matter of fact, this is an
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important problem that is encountered by some of the multidimensional poverty indices sug-

gested by Lugo and Maasoumi (2008). According to some of the poverty measures presented

in that paper and given the assumed tradeo¤s across dimensions, it is possible for a poor

person to be lifted out of poverty as a result of an increment in a nondeprived dimension,

thus lowering the measured level of poverty22 . In this discussion, it is important to point out

that relaxing the Strong Focus axiom in favor of its weak version does not necessarily imply

that individuals can be pulled out of poverty by increases in non-deprived dimensions. In the

approach presented in this paper, an individual that is identi�ed as �poor�does not change

its status even if the achievement levels in non-deprived attributes are arbitrarily increased

(the only thing that is allowed to change is the �intensity�of poverty of that individual, not

its poor/non-poor status). Put in other words: our approach does not lift individual D out

of poverty because of his high life expectancy, but it introduces the possibility of asserting

that he is not as poor as another individual E who is also a street beggar but whose health

is on the corresponding health poverty line (typically a relatively bad health status).

It is important to emphasize that the approach presented here transcends the hotly

debated and still unresolved problem of �identi�cation�of the poor (see footnote #1). The

methodology introduced here does not take a particular stance in that problem but rather

suggests that once a poor individual has been identi�ed �no matter how�, the dimensions

in which she is not deprived might be allowed to somehow in�uence her deprivation level23

. Interestingly, this idea is reminiscent of the notion of �poverty reduction failure�which has
22In that paper, the authors present three alternative multidimensional poverty measures, but two of them
satisfy the Strong Focus axiom. The only measure violating Strong Focus and satisfying Weak Focus uses
the so-called �poverty frontier�approach, which basically generates a composite index of well-being so that
poverty can be de�ned in terms of that single-dimensional index. It is in this context that over-achievements
in non-deprived dimensions can pull individuals out of poverty. The use of the �poverty frontier�approach
has been criticized by Bourguignon and Chakravarty (2003:27-28) for being a methodology that looses track
of the dimension-speci�c poverty gaps�therefore not being a truly multidimensional method�so it has not
been explored in this paper.
23
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been recently introduced in the literature (see, for instance, Kanbur and Mukherjee 2007,

Ravallion 2010 or Thori and Moene 2011), albeit it is quite di¤erent in nature. On the

one hand, in those papers poverty is conceptualized on the basis of income distributions

alone (i.e.: it is unidimensional). On the other hand, the main goal in that literature is to

assess the extent of poverty relative to the resources available in the society to eradicate it,

which is a quite di¤erent exercise from our assessment of deprivation in a multidimensional

framework.

Other things being equal, allowing for trade-o¤s between meagre and non-meagre at-

tributes inevitably reduces the extent of overall multidimensional poverty levels. This in

itself does not necessarily imply lower incidence of poverty or increased satisfaction with the

status quo. The approach suggested here o¤ers a way of gauging actual poverty more accu-

rately and di¤erentiates between otherwise indistinguishable comparisons. In this respect,

the empirical results shown in this paper suggest that our assessments of multidimensional

poverty can di¤er dramatically when the overly restrictive Strong Focus is abandoned in

favor of weaker versions of the axiom.

While the methodology presented here allows modelling di¤erent degrees of complemen-

tarity / substitutability between couples attributes �a substantial improvement with regard

to the current state of the literature that �xes those degrees at a constant level for all possible

couples �much work still remains to be done to determine their values. In this regard, the

robustness techniques suggested in this paper can be seen as a preliminary but exhaustive

approach that should certainly be re�ned in future research.

In case one used the intersection approach to identify �the poor�, the ideas introduced in this paper would
not be applicable because poor individuals would not have any achievements above any dimension-speci�c
poverty line.
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7. Appendix

Proof of Theorem 1. Since P satis�es Subgroup Decomposability, it can be written as

P =
1

n

nX
i=1

p(gi; ei)

for some function p : Rk�[0; 1]k ! R. Clearly, for any (g; e) 2 Rk�[0; 1]k; p(g; e) = P (G;E)

for some deprivation and achievement matrices (G;E) 2 (Gn�kS ; En�kS ) where all rows are

equal to (g; e). Therefore, since P satis�es Subgroup Decomposability, Continuity, Homo-

theticity, Weak Dimension Separability, Monotonicity on Deprivation Gaps and Indepen-

dence, p will satisfy them too. Following Lasso de la Vega and Urrutia (2011:190), it can be

shown that Monotonicity on Deprivation Gaps implies minimal increasingness and strict es-

sentiality (see Blackorby and Donaldson 1982:251). Moreover, the domain of p is Rk� [0; 1]k,

which is connected and topologically separable. In an analogous way to Blackorby and

Donaldson (1982: 252), based on Gorman (1968:369) and Blackorby, Primont and Russel

(1978:127) it can be shown that p is additively separable and can be written as

p(g; e) = h�

 
kX
j=1

pj(gj; e)

!
(6)

where h� and pj; j 2 f1; : : : ; kg are continuous real-valued functions and h� is increasing. By

Homotheticity, p can be written as

p(g; e) =  (p(g; e)) (7)

where  is an increasing function and p is linearly homogeneous on g. Combining equations

(6) and (7) one has that

p(g; e) =  �1

 
h�

 
kX
j=1

pj(gj; e)

!!
= p�

 
kX
j=1

pj(gj; e)

!
(8)
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for some increasing function p� :=  �1 � h�. Using equation (8), for each l 2 f1; : : : ; kg we

can de�ne the functions

hl(gl; e) := p(gmin; : : : ; gmin; gl; gmin; : : : ; gmin; e) = p�

 
pl(gl; e) +

X
j 6=l

pj(gmin; e)

!
: (9)

Since p is linearly homogeneous on g, so are the functions hl(gl; e): Therefore

hl(�gl; e) = �hl(gl; e) (10)

for any � 2 R and for all l 2 f1; : : : ; kg. As a consequence, there exist continuous functions

�l(e) such that

hl(gl; e) = glhl(1; e) = gl�l(e) (11)

Plugging equations (9) and (11) we have that

gl�l(e) = p�

 
pl(gl; e) +

X
j 6=l

pj(gmin; e)

!
: (12)

Hence

pl(gl; e) = p��1 (gl�l(e))�
X
j 6=l

pj(gmin; e) (13)

Substituting equation (13) in equation (8), one has that

p(g; e) = p�

 
kX
j=1

"
p��1

�
gj�j(e)

�
�
X
l 6=j

pl(gmin; e)

#!
= p�

 
kX
j=1

p��1
�
gj�j(e)

�
+ &(e)

!
(14)

for some continuous functions �j(e); & and a continuous increasing function p
�. Fixing any

e 2 [0; 1]k, equation (14) is essentially the same as equation (34) in Blackorby and Donaldson

(1982:260). Therefore, following those authors�who in turn draw from Eichhorn (1978:32-

34)�it can be proven that p��1 =: f must satisfy the following functional equation

f(�u) = �(�)f(u) + b(�) (15)

42



Without the domain restrictions on � and u, the solutions to equation (15) are well-known

(Aczel et al 1986). It is straightforward to show that the solution for equation (15) on the

present restricted domain is

f(u) =

8><>: au� + b

c ln(u) + d

9>=>; (16)

for some parameters a; b; c; d; � (with � 6= 0). Since continuity of f at 0 precludes the

logarithmic solution, the general solution of equation (14) can be written as

p(g; e) = p�

 
kX
j=1

a
�
gj�j(e)

��
+ kb+ &(e)

!
=

 
kX
j=1

�
gj�j(e)

��
+
b(k � 1) + &(e)

a

!1=�
:

(17)

Since p is linearly homogeneous on g, one must have that (b(k � 1) + &(e)) =a = 0. Therefore,

equation (7) can be rewritten as

p(g; e) =  

0@ kX
j=1

�
gj�j(e)

��!1=�1A (18)

for some continuous increasing function  .

We will now decompose the continuous functions �j(e). Inspecting Table 1, we see that

the values of gmin can be either 0 or 1.

Case 1. Assume gmin = 0:

Consider now a hypothetical scenario where all individuals have exactly the same achieve-

ment distribution: they are all deprived in exactly the same dimension and non-deprived in

the other ones. Denote that speci�c dimension by d. Therefore, g := (gmin; : : : ; gmin; gd; gmin; : : : ; gmin) =

(0; : : : ; 0; gd; 0; : : : ; 0): In that case, equation (18) can be written as

p(g; e) =  (gd�d(e)) (19)
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De�ne the excess vector "0 = (0; : : : ; 0). Plugging "0 into equation (19) yields

p(g; "0) =  (gd�d(0; : : : ; 0)) =  (cgd) (20)

for some constant c 2 R. Consider now the excess vector "1 = (e1; 0; : : : ; 0). Plugging "1

into equation (19) yields

p(g; "1) =  (gd�d(e1; 0; : : : ; 0)) =  (gd'd1(e1)) (21)

for some continuous function 'd1 de�ned on [0; 1]. De�ning eg = (0; : : : ; 0; (gd'd1(e1)) =c; 0; : : : ; 0)
and using equations (20) and (21), it turns out that

p(eg; "0) =  (gd'd1(e1)) = p(g; "1): (22)

De�ne now "12 = (e1; e2; 0; : : : ; 0) and "2 = (0; e2; 0; : : : ; 0). Applying Independence to

equation (22) yields

p(g; "12) = p(eg; "2): (23)

According to equation (19),

p(g; "12) =  (gd�d("12)) (24)

and

p(eg; "2) =  (((gd'd1(e1)) =c)�d("2)) =  (((gd'd1(e1)) =c)'d2(e2)) (25)

for some continuous function 'd2 de�ned on [0; 1]. Plugging (24) and (25) into (23) yields

 (gd�d("12)) =  (((gd'd1(e1)) =c)'d2(e2)) : (26)

Since  is a continuously increasing function,  �1 is well de�ned. Applying  �1 to both

sides of equation (26) yields

�d("12) = ('d1(e1)'d2(e2))=c: (27)
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Repeating this procedure iteratively, one has that

�d(e) �
kQ
l=1

'dl(el) (28)

for some continuous functions 'dl(:) de�ned on [0; 1]. Substituting equation (28) into

(18) yields the desired functional form.

Case 2. Assume gmin = 1:

As is well-known,

lim
�!0

 
kX
j=1

�
gj�j(e)

��!1=�
=

kY
j=1

�
gj�j(e)

�
(29)

De�ning g = (gmin; : : : ; gmin; gd; gmin; : : : ; gmin) = (1; : : : ; 1; gd; 1; : : : ; 1); equation (19) ob-

tains. One can here essentially repeat the same steps as in Case 1 from equation (19) to

(28) to obtain the desired functional form shown in equation (28). This completes the proof

of the theorem.

Q.E.D.

Proof of Theorem 2.

Under the Consistency condition, it is trivial to prove that a correction function de�ned

as 'jl(eil) = 1+(�jl�1)e�il with �jl 2 (0; 1]; � > 0 generates a multidimensional poverty index

P that satis�es Monotonicity on Excess Gaps and Uniform Scale Invariance. Therefore, we

only need to prove the reverse implication.

Consider a hypothetical scenario where (G;E) 2 Gn�kS � En�kS and where all individuals

are deprived in exactly the same attribute and non-deprived in the other ones. Since equation

(3) and the Consistency condition are assumed to hold, it is tedious but not di¢ cult to show
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that Uniform Scale Invariance can be written in terms of the correction functions 'jl(:) in

the following way:

'jl(tx)� 'jl(ty) = h('jl(x)� 'jl(y); t) (30)

for each 'jl(:), for all x; y 2 [0; 1] and for every t > 0 such that tx; ty 2 [0; 1], where h is

some function. Let u = 'jl(x) � 'jl(y); v = 'jl(y) � 'jl(z): Then u + v = 'jl(x) � 'jl(z):

From (30) we have that

h(u+v; t) = 'jl(tx)�'jl(tz) = ('jl(tx)�'jl(ty))+('jl(ty)�'jl(tz)) = h(u; t)+h(v; t) (31)

By Normalization and Monotonicity, there exist parameters �jl such that 'jl(a) 2

[�jl; 1] � (0; 1] for all a 2 [0; 1]; so one must have that u; v 2 [�jl � 1; 1 � �jl] � (�1; 1):

Hence, from (31) we see that h satis�es the Cauchy equation with respect to the �rst ar-

gument whenever this one is included in the interval [�jl � 1; 1� �jl]. It is now possible to

extend this functional relationship to the set of real numbers R: Take any c 2 R: It is always

possible to write c = p=q for some p 2 [�jl � 1; 1� �jl]; q 2 [�jl � 1; 0) [ (0; 1� �jl]. De�ne

H(c; t) = h(p; t)=(h(q; t). Using the same arguments as in Theorem 1 (Step 2), it is straight-

forward to check that H(c; t) is well de�ned and that H(c1 + c2; t) = H(c1; t) +H(c2; t) for

any c1; c2 2 R: By Continuity, h and H must be continuous in at least one point, so we

can apply the characterization result found in Aczél (1966:34), according to which H can be

written as H(x; t) = cx�(t) for every x 2 R for some continuous function �(t) and for some

constant c. Hence, since H is an extension of h, it is possible to rewrite (30) as

'jl(tx)� 'jl(ty) =  (t)('jl(x)� 'jl(y)) (32)

for some continuous function  . Again, this equation is restricted to the values of

x; y; tx; ty 2 [0; 1], but we will need to extend it to the set of positive numbers R+. As
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before, pick any c 2 R+: It is always possible to write c = p=q for some p 2 [0; 1]; q 2 (0; 1].

De�ne

�(c) :=
'jl(p)� 'jl(0)

'jl(q)� 'jl(0)

This function is well de�ned because if one has that c1 = c2 2 R+, then it is possible

to write c1 = p1=q1 and c2 = (mp1)=(mq1) for some p1 2 [0; 1]; q1;m 2 (0; 1], so that, by

equation (32)

�(c2) :=
'jl(mp1)� 'jl(0)

'jl(mq1)� 'jl(0)
=
 (m)('jl(p1)� 'jl(0))

 (m)('jl(q1)� 'jl(0))
= �(c1)

Given that 'jl(:) satis�es Uniform scale invariance, one has that, if 'jl(x) � 'jl(y) =

'jl(x
0) � 'jl(y

0); then 'jl(tx) � 'jl(ty) = h('jl(x) � 'jl(y); t) = h('jl(x
0) � 'jl(y

0); t) =

'jl(tx
0) � 'jl(ty

0) for any x; y; x0; y0 2 [0; 1]: We will now check that � also satis�es that

relationship. Assume that �(x)� �(y) = �(x0)� �(y0) for any x; y; x0; y0 � 0: If one writes

x = p1=q1; y = p2=q2; x
0 = p3=q3; y

0 = p4=q4; with pi 2 [0; 1]; qi 2 (0; 1] this means that

'jl(p1)� 'jl(0)

'jl(q1)� 'jl(0)
�
'jl(p2)� 'jl(0)

'jl(q2)� 'jl(0)
=
'jl(p3)� 'jl(0)

'jl(q3)� 'jl(0)
�
'jl(p4)� 'jl(0)

'jl(q4)� 'jl(0)
(33)

Now, for any t > 0, by equation (32) one has that

�(tx)��(ty) =
'jl(tp1)� 'jl(0)

'jl(q1)� 'jl(0)
�
'jl(tp2)� 'jl(0)

'jl(q2)� 'jl(0)
=  (t)

�
'jl(p1)� 'jl(0)

'jl(q1)� 'jl(0)
�
'jl(p2)� 'jl(0)

'jl(q2)� 'jl(0)

�
(34)

by equations (32) and (33) the last expression is equal to

 (t)

�
'jl(p3)� 'jl(0)

'jl(q3)� 'jl(0)
�
'jl(p4)� 'jl(0)

'jl(q4)� 'jl(0)

�
=
'jl(tp3)� 'jl(0)

'jl(q3)� 'jl(0)
�
'jl(tp4)� 'jl(0)

'jl(q4)� 'jl(0)
= �(tx0)��(ty0)

(35)

To sum up, using equations (34) and (35) we have checked that � satis�es the following:

For any x; y; x0; y0 � 0, �(x) � �(y) = �(x0) � �(y0) implies �(tx) � �(ty) = �(tx0) �

�(ty0) for any t > 0. Given the fact that the continuity of 'jl(:) ensures that � must be

47



continuous everywhere, we can apply the result of Eichhorn and Gleissner (1988:24-26) and

Aczél (1988:6) according to which we must have either �(c) = �c� + 
 (for all c � 0 and

for some constants �; �; 
) or �(c) = � log c + 
 (for all c > 0 and for some constants �; 
).

Given the fact that �(0) = �(0=q) = ('jl(0)� 'jl(0))=('jl(q)� 'jl(0)) = 0, one must have

that �(c) = �c� for some constants � 2 R; � > 0. Moreover, one has that �(1) = �(p=p) =

('jl(p) � 'jl(0))=('jl(p) � 'jl(0)) = 1, so one must have that �(c) = c� for some constant

� > 0. Hence, when c 2 [0; 1];�(c) = �(c=1) = ('jl(c)�'jl(0))=('jl(1)�'jl(0)) = c�: This

means that the correction function can be written as

'jl(c) = ('jl(1)� 'jl(0))c
� + 'jl(0) (36)

By Normalization, 'jl(0) = 1, so we have obtained the desired functional form 'jl(c) =

('jl(1)� 1)c� + 1 for some � > 0. De�ning �jl := 'jl(1) we are done.

Q.E.D.
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