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MEASURING INEQUALITY AND DEPENDENCES BETWEEN INCOME 

SOURCES WITH ADMINISTRATIVE AND SURVEY DATA 

Abstract 

This paper aims at analyzing the effects of changing from survey to administrative data on 

inequality and its structure. Taking advantage of the Spanish Survey on Income and Living 

Conditions (ECV) that continued asking households for their income despite assigning them the 

income data provided by the Tax Agency and the Social Security administration, different 

analyses are carried out. By using copula functions we pay special attention to the effect on the 

dependences between income sources. We find a significant growth in the disposable income of 

households when using administrative data. The incomes of both tails of the distribution increase 

considerably more than middle incomes, and administrative data produce significantly lower 

levels of inequality. Using administrative instead of survey data also gives rise to changes in the 

structure of inequality by income sources, rising the contribution of capital income. Both methods 

of data collection also produce significant differences in the observed dependences between 

income sources. 

Keywords: inequality, surveys, administrative data, copula functions 

JEL: C46, D31, D63 
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1. INTRODUCTION1 

 

Studies on inequality in the distribution of income have gained considerable momentum 

in the last decade. The increase in inequality in the OECD countries, as evidenced by 

various reports (OECD, 2008, 2011 and 2015), has generated a growing interest both in 

identifying the possible causes of the increase in income differences between households 

and in discerning what should be the optimal design of the policies to reduce their 

extension. The development of both lines of research has led to fundamental 

contributions, some of them crossing the frontiers of economic analysis and moving to 

the forefront of social debate (Piketty, 2013; Atkinson, 2015). The economic crisis – with 

a regressive impact in many countries – and some of the subsequent adjustment policies 

added more pressure to the tendency of increasing inequality already present in many 

countries. 

 

A second reason for the renewed growth of inequality studies has been the increasing 

availability in many countries of datasets that cover extensive periods of analysis. In 

several OECD countries, household surveys carried out with homogeneous 

methodologies over long and continuous periods allow reconstructing changes in the 

distribution of income in the very long term. Household surveys, however, are not exempt 

from major problems, which can impose important limits to have accurate diagnoses of 

the trends and determinants of inequality and to design policies based on them: non-

response, measurement error, sampling errors or income underreporting, and, in general, 

a limited representation of the richest households due to undercoverage, top coding and 

underreporting of top incomes. Some of these problems have been growing over time 

(Meyer et al., 2015). Furthermore, attempts to reducing some of them – like non-response 

– may also amplify measurement error, which some authors find to be a much larger 

source of bias than all other error components (Meyer and Mittag, 2019a).  

 

These limitations of the surveys affect the measurement of inequality. The under-

coverage of the highest incomes, for example, implies a systematic underestimation of 

                                                           
1 Luis Ayala acknowledges financial support from Comunidad de Madrid (S2015/HUM-3416-DEPOPOR-

CM) and Ministerio de Economía y Competitividad (ECO2016-76506-C4-3-R). Financial support from 

Spanish Ministry of Economy and Competitiveness (project ECO2016-77900-P) and ERDF is 

acknowledged by Ana Pérez and Mercedes Prieto-Alaiz. The third author also acknowledges financial 

support from Project S2015/HUM- 3416-DEPOPOR-CM. 
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inequality since it is in this tail of the income distribution that some of the most important 

changes in inequality have occurred over the last two decades. The same happens with 

survey errors in social benefits, as they do not adequately reflect the income of those in 

the lower tail of the distribution. 

 

As an alternative, the use of administrative records has been expanded to analyze changes 

in income distribution. It has been generalized, for example, the use of tax records to 

measure inequality, especially when focusing on the richest percentiles (Atkinson and 

Piketty, 2010). A great advantage of tax data is the availability of very long periods of 

analysis and a better coverage of higher incomes. These data are also affected, however, 

by some limits that condition its use as the main reference in the study of the distribution 

of income. Among other problems, tax avoidance and tax evasion, income shifting, 

theoretical problems to form households from tax units and, especially, limited coverage 

of households with incomes below the income tax threshold stand out. Tax records may 

include only taxable sources of income and miss informal sources that may be captured 

in the surveys (Meyer and Mittag, 2019b). As stressed by Alvaredo et al. (2015), since 

tax data are collected as part of an administrative process, the definition of income, or 

income units, cause difficulties for comparisons across countries, but also for time-series 

analysis where there have been substantial changes in the tax system.  

 

In addition, the theoretical advantage that tax data best capture higher incomes is limited 

by the fact that several fiscal manipulation strategies are sensitive to changes in marginal 

tax rates and income reporting rules. As a result, the income recorded in tax data may not 

remain steady over time, and high-income earners are most able to adjust the way that 

they receive and report income (Slemrod, 1995; Burkhauser et al., 2012; Auten and 

Splinter, 2019). Changes in reporting rules may thereby alter the way income is reported 

at the top of the distribution. Whereas some authors defend that this type of fiscal 

manipulation may affect the measurement of top income only for short-term trends 

(Piketty and Saez, 2003), these trends can be especially relevant to understanding changes 

in inequality in the face of certain shocks, such as increased unemployment or a drastic 

change in the tax-benefit system. 

 

The problems of surveys to properly collect benefits has also increased the use of 

administrative records of social benefits to reduce reporting errors in survey measures of 
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program participation. As found by Lynn et al. (2012), survey measures of benefit receipt 

are subject to measurement error. Some survey respondents may under-report benefit 

receipt due to simple forgetting, misplacement in time or misclassification, or due to 

conscious suppression. Given that some programs in survey data are sharply under-

reported, the distributional and poverty-reducing effects of transfer programs may not be 

accurate. However, some recent works show that while administrative data are usually 

considered the “gold standard” for this type of variables they can still be missing, 

incorrectly entered, or outdated (Courtemanche et al., 2019).  

 

In practice, opting for one type or another of data – survey or administrative – may imply 

obtaining results of inequality and other processes related to the income distribution that 

are not always similar. Dahl et al. (2011) found that the trends in individual earnings and 

household income volatility with administrative earnings records were in contrast to what 

is usually found in survey data. A similar result was obtained by Carr and Wiemer (2018) 

using consistent samples drawn from survey-linked administrative earnings data. 

Burkhauser et al. (2012) found significant differences in the percentiles with higher 

income in the United States in survey (Current Population Survey) and tax data, 

questioning some of the results commonly accepted until then with respect to the shares 

of the higher percentiles.  

 

Some authors have tried to combine fiscal data and survey data by harmonizing the 

definitions of variables to improve the representativeness of higher incomes (Burkhauser 

et al., 2016), but there are still very few works that have advanced in this line. By linking 

a subset of individuals from household survey to the same individuals’ tax returns, 

Higgins et al. (2018) found that individuals in the upper half of the income distribution 

tend to report less labor income in household surveys than those same individuals earn 

according to tax returns, and underreporting is increasing in income. In the case of social 

benefits, Lynn et al. (2012) used administrative data on benefit receipt matched at the 

individual level to the survey microdata to find that under-reporting is far more prevalent 

than over-reporting of benefit receipt in survey data. Meyer and Wu (2018) link 

administrative data from Social Security and survey data finding that the latter yield 

effects of some social benefits on near poverty that are two-thirds what the administrative 

data generate.  
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The possible implications on inequality measurement of opting for one type of data may 

therefore be important. Given the problems mentioned for the two types of data, the best 

procedure for a more accurate measurement of inequality is linking survey and 

administrative data. This strategy combines the accuracy of the administrative 

information with the rich demographic detail and population representativeness of the 

surveys. 

 

In Spain, the main dataset for measuring inequality – the Spanish Survey on Income and 

Living Conditions (ECV) – went from collecting the income data of the participating 

households from questionnaires and interviews to extracting them directly from 

administrative records. How does this change affect the evolution of inequality? How 

does its structure change? What sources of income modify their contribution to total 

inequality when measured with administrative data instead of the traditional method? The 

Spanish data provide an unique opportunity to answer these questions by comparing the 

two different data sources for the same individuals. Since the National Institute of 

Statistics (INE) continued to ask households for their income with the traditional 

methodology despite assigning them the income data provided by the Tax Agency and 

the Social Security administration, it is possible to evaluate the impact of moving from 

one data source to another. 

 

This paper aims at analyzing the effects of the change in the income data source on income 

inequality and its structure. Different types of analysis are carried out trying to identify 

the change in each income source and its impact on inequality with the new criterion. We 

pay special attention to the possible effect on the dependences between sources of income 

– that is an issue so far very little studied in this strand of the literature – using copula 

functions. We believe that our paper makes a contribution in identifying which individual 

and household characteristics are most associated with income underreporting, how 

administrative data produces lower inequality results, and, most innovative, how 

administrative data gives rise to a different structure of dependences between income 

sources.  

 

Among our main findings are a significant growth in the disposable income of households 

when using administrative data, that is especially relevant in the case of capital income. 

The incomes of both tails of the distribution increase considerably more – more intensely 
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in the lower tail of the distribution – than those of the middle strata, producing levels of 

inequality that are significantly lower with administrative data. We also find that both 

methods of data collection also produce significant differences in the observed 

dependences between income sources. 

 

The remainder of the paper is organized as follows. Section two describes the change in 

the way to collect income in the survey, paying special attention to the variations in each 

source of income. In section three we analyze the socioeconomic profiles in which the 

methodological change has caused a greater variation in disposable income. In section 

four we estimate the impact of using administrative data on inequality. In section five we 

identify the effect of administrative data on the corresponding distributions for each 

income source and on the dependences between income sources. Section six concludes. 

  

2. THE CHANGE IN THE INCOME COLLECTION METHOD: EFFECTS ON 

INCOME LEVELS 

 

Since 2004, the countries of the European Union have the same data source – with 

common methodology and questionnaires – to collect information on living conditions 

and household income (EU-SILC, in Spain ECV). The objective pursued by the European 

Community institutions when creating this new dataset was to advance in the 

comparability of results in the main indicators of inequality, poverty and social inclusion 

in the member countries of the European Union. To this end, the questionnaires, the 

codification of the different variables, and the weighting systems were harmonized. The 

ECV provides information on individual and household income, the material and 

demographic characteristics of households, and a broad set of sociodemographic 

information. There is also a very detailed information on material well-being, necessary 

to estimate the incidence of multidimensional deprivation. Each year this information is 

complemented with that coming from specific modules. 

 

The sample size is about 16,000 households, distributed in 2,000 census sections. Another 

relevant aspect is the rotating panel character of the survey, thanks to the accomplishment 

of four consecutive interviews to the same households renewing 25% of the sample each 

year. There is availability of longitudinal files with information for every three years since 
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2004-2006. Until relatively recent times, there was a problem of lack of 

representativeness of certain population groups, such as immigrants, with a certain bias 

in the survey of foreigners with a higher level of income than the group’s average. The 

National Institute of Statistics (INE) corrected this problem taking as reference from 2012 

the Population Census of 2011 instead of 2001.2 Equally or more important, the variable 

of nationality was incorporated for the calibration of each survey. 

 

In terms of the measurement of inequality, the main methodological change occurred in 

2013. Until that year, household income collected in the survey had as its sole source that 

declared by households at the time of the interview. From that date, the information 

provided by the Tax Agency and Social Security was included as the income of 

households and individuals. Using this new way to collect income, the INE recalculated 

that of previous waves bringing the new series to 2009. Although the official data are 

those that appear with the new methodology, until 2014 the INE continued to collect 

income through the interview method. The preliminary analyses carried out by the INE 

showed that the transition from one system to another did not seem to have an impact on 

the size of inequality measures although the effect on the average levels of the different 

income sources was going to be very significant (Méndez and Vega, 2011). 

 

The motivation for the change of methodology was, fundamentally, the improvement of 

the quality of the information and a better knowledge of the households’ income sources. 

As mentioned above, one of the traditional problems of household income surveys is non-

response in certain components of income. Another limitation is the difficulty of knowing 

through interview data both the gross income of each member of the household and the 

social contributions and taxes paid, which often means that the statistical production 

centers themselves must simulate them. Some EU countries, in fact, had already used 

administrative files for the generation of income in EU-SILC. This is the case of the 

Nordic countries, especially, and the Netherlands, France, Austria or Slovenia in some 

components of income. 

 

The procedure to transfer the income data from the administrative files consists of 

collecting through the national identity number of the individuals included in the sample 

                                                           
2 In order to facilitate the comparison with the previous waves, the original data of these surveys were re-

weighted using the new Census. 
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the data recorded in the tax sources and the Social Security files. That number is available 

in more than 98% of adults.3 For the allocation of social benefits, the INE uses the 

Registry of Public Social Benefits. In the preliminary studies of the INE some divergences 

were found between the type of benefits declared by some households and those actually 

received (INE, 2010). This is the case, for example, of some non-contributory old-age 

pensions classified as such by the interviewees themselves but which appeared in the 

Social Security files as contributory. Another difficulty is that some benefits that appear 

in the Registry, such as retirement due to disability, are not classified as such in the 

survey. The previous evaluation carried out by the INE (2010) revealed that the average 

value of the data coming from the administrative files was somewhat higher than that 

declared in the survey (4.6%). 

 

Data from the Tax Agency are used for the other income sources, extracted mainly from 

the Personal Income Tax (IRPF) files. The two main problems for the use of tax records 

are the high number of people without the obligation to declare income, and the joint 

declarations which can considerably limit the necessary individualization of income. To 

solve the first of these problems the INE uses tax withholding files, which include income 

earners without the obligation to declare. One of the main advantages of the use of tax 

data is that there are many households that when interviewed do not declare to have 

capital income but do have them in their tax data. According to the estimations made by 

the INE (2010), before the generalization of the new procedure the average capital income 

with tax data was double that with the traditional criterion. The opposite happens in self-

employment income although the difference was not so great (6%). 

 

Since the change in methodology, the information on household income provided by the 

INE for the year 2009 onwards is based on administrative data. However, until 2014 the 

INE continued carrying out the survey with the previous methodology. The access to 

these files – available on demand – allow to check directly with the microdata the effect 

that has considering one type or another of income collecting on the different income 

sources. We focus on the survey corresponding to 2014 since this is the last one with data 

for the two methods of collecting income. 

                                                           
3 The singularity of the financing system of the regional communities prevents the same procedure from 

being used in the case of some regions, like the Basque Country and Navarre, where income information is 

still collected by the interview method. 



9 
 

 

A necessary first step is the identification of the main income sources in each survey. The 

criterion of aggregation that has been followed is to group the different incomes into five 

major sources: labor income, self-employed income, capital income, benefits and taxes.4 

These incomes appear in the different files of the survey, being necessary – in some cases 

– the aggregation of the different income sources of each member of the household. While 

most of the social benefits are included in the individuals file, there are some that 

correspond to the households file – family, social exclusion, housing benefits and taxes. 

 

FIGURE 1 

 

Figure 1 shows the change that occurs in the average levels of disposable income and its 

different components when going from a criterion for measuring income through the 

traditional method to administrative records.5 All the variations are significant and, except 

in the case of self-employment income, there is an increase when going from interview 

to administrative data. In line with what was anticipated by the INE, the first relevant 

result is the increase in disposable income (higher than 14%).6  

 

This growth is mainly explained by higher levels of labor income – given their weight in 

total income – which grows more than 17%, and capital incomes, which are more than 

2.5 times higher in administrative than in survey data. The latter is undoubtedly the source 

where there is greater discrepancy between the two types of income data. The best 

coverage of capital income with administrative data is an important advance in an income 

source for which underreporting has traditionally been very large. The opposite occurs 

with self-employment income which decreases more than 10% in administrative as 

compared to survey data. 

 

Especially relevant is the difference that may exist in the components of income related 

to thepublic sector intervention, given the universal nature of administrative records. The 

conversion of gross to net income is in fact a common problem in income surveys. Many 

                                                           
4 In the sake of simplicity we have grouped taxes and social contributions into a single category. 
5 We adjust incomes using the OECD modified equivalence scale. 
6 This result is very similar to that of Goerlich (2019), who finds that administrative data raised income by 

around 16%. 
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surveys do not contain raw data and it is necessary to use algorithms for the conversion 

of the net data to gross, being difficult to collect all the complexity of the tax-benefit 

systems for the different individuals that make up a household (Immervoll and 

O'Donoghue, 2003). The INE points out that although in the fieldwork the gross and net 

level are requested for each source of income, the ignorance that in many cases the 

informants have on gross income makes it necessary to construct a model that allows the 

conversion of gross to net in each type of income (Méndez, 2007). As stressed by some 

authors, these algorithms can affect the distributional outcomes (Goerlich, 2016). The 

change from survey to administrative data increases the average level of income for cash 

benefits by 15.4%. The change in average taxes and social contributions is much more 

marked (around 50%). Again, this difference can decisively affect the measurement of 

the redistributive effects of taxes. 

 

3. DETERMINANTS OF INCOME UNDERREPORTING IN SURVEY DATA  

The change from survey to administrative data can have important effects on the 

measurement of the economic well-being of households. Opting for one procedure or 

another may produce changes in the relative situation of each type of household in the 

distribution of income. It may be relevant, therefore, to identify in which categories of 

the population the change in income is more important when moving to administrative 

records. However, the INE does not collect the survey and administrative data in the same 

file. It provides different files for each type of data with different household identification 

numbers in each file. In order to identify the characteristics of households and individuals 

that determine a greater difference between the two types of data, it was necessary to 

merge the two surveys. The objective was to obtain a single file from the resulting 

matching with the different income variables with the two methodologies for the same 

households. We used matching methods drawing information from the different files 

provided by the INE.7  

 

Once the matching was completed – and it was verified that the same differences in the 

average levels of income sources estimated in the previous section were maintained – it 

was possible to analyze in which socioeconomic categories the change of criterion has 

                                                           
7 Less than 5% of the observations remained unmatched and the randomization tests did not detect any 

pattern in which they had been left out. 
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greater incidence. To identify the specific effect of each characteristic we estimate a 

Probit model, in which the dependent variable is having an income difference higher than 

the average for the whole population when moving from survey to administrative data. 

We have defined this binary variable in three ways:  

 

pi = 1 if (yA
i - y

S
i) > (yA - yS) and pi = 0 otherwise 

pi = 1 if (yA
i - y

S
i) > 1.5 (yA - yS) and pi = 0 otherwise 

pi = 1 if (yA
i - y

S
i) > 2 (yA -  yS) and pi = 0 otherwise 

 

where yA is disposable income with administrative data, yS is disposable income with 

survey data, and (yA-yS) is the average difference in disposable income with 

administrative and survey data. Differences are calculated as percentages. 

 

TABLE 1 

 

Table 1 shows the results of the estimated model. Some characteristics seem not too much 

relevant to explain changes in income levels, such as gender, marital status, housing 

tenure, and educational attainment. In the latter case, only the coefficient corresponding 

to the individuals with the highest level is significant once the rest of the characteristics 

are controlled. This result may be related, as it will be seen, with a larger income 

difference in households in the upper percentiles among which there is a much higher 

presence of graduates than in the lower deciles. 

 

The results also show that when age increases – especially in individuals over 65 years of 

age – the income growth when moving to administrative data is lower. This result is 

related to the fact that the income of this group is largely dependent on social benefits. As 

noted in the previous section, the difference in the values of benefits is small in relation 

to other income sources. The different types of household generally have significant 

coefficients, being lower in households with dependent children than in single persons. 

Single parenthood does not appear as a characteristic associated with greater 

underreporting, with insignificant effects in almost all models. 
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One of the categories where we do find a higher likelihood of income changes when 

moving to administrative data is that of immigrants from outside the European Union. 

The stricter the criterion for defining that probability – a difference in income well above 

the average – the more important the effect. Among the individuals who are working, the 

impact of the change in the income collection method is much lower than in the rest of 

the population. This result is related to the lower variation observed in labor income with 

both methods. The same happens with retired people for the reasons already mentioned. 

The opposite case is that of the unemployed, which seems to indicate a marked 

underreporting of income from unemployment benefits when they are collected through 

interviews. 

 

4. EFFECTS ON INEQUALITY 

 

One of the most important consequences of the change in the method to collect income is 

the possible effect it can have on inequality. To the extent that the change to 

administrative data produces a better reporting of some incomes – especially some of the 

most unequal such as capital income – the change in method could affect the measurement 

of inequality. 

 

A first approach to this possible effect on inequality is the comparison of the density 

functions of disposable income with the two types of data. Figure 2 shows the two 

distributions for the year 2014, the last one for which comparison is possible. The data 

reveal that changing to administrative data produces a shift to the right of the distribution, 

a reduction in the number of households with incomes close to the modal value, and a 

considerable stretch of the distribution in its upper tail. While in the survey data about 

5% of households have an equivalent income around 30,000 euros, that percentage rises 

to almost 8% with administrative data. There is also a greater presence of low-income 

households in the distribution resulting from survey data, with 18% of households with 

less than 6,000 euros, a percentage significantly higher than the one resulting from 

administrative data (13%). 

 

FIGURE 2 
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The way in which the change in methodology affects different parts of the distribution of 

disposable income is best appreciated when differences by percentiles are estimated. 

Figure 3 shows the growth in the average income of each percentile in percentage terms. 

A first result is that administrative data increase the level of income in the whole 

distribution (higher than 10% in all percentiles). A second result is that this growth is not 

uniform throughout the distribution. It is especially marked in the first percentiles where 

income grows more than 20%. Moreover, between the poorest 5% and the richest 5% 

there is a clear decreasing profile to regrow in the higher income stratum, with income 

increases higher than 15% in the richest percentiles. 

 

FIGURE 3 

 

Given this effect in the different sections of the distribution, the result should therefore 

be a reduction in inequality when moving to administrative data. The reason is the higher 

increase in income in the lower percentiles – more likely to underreport their real income 

in the survey – although possibly smoothed by the growth also recorded by the richest 

percentiles. In the latter case, it is easy to interpret that this growth occurs thanks to a 

better coverage of capital income.  

 

Table 2 shows a wide variety of inequality measures estimated with the two income 

distributions that result from the double criterion in the collection of income. In general, 

the differences for most indicators are small but significant. This is the case of the Gini 

index, which modestly decreases when moving to administrative data. This result is not 

repeated in all measures, which in some cases increase when moving to administrative 

data. 

 

TABLE 2 

 

This variety of results is related to the different interpretations of inequality that each 

index summarizes and to the difference in the incidence of the change in both tails of the 

distribution. In the case of the Theil index,  

Theil (c)=(1/c(c-1))(1/n)i
n(yi/)c-1 c0 , c1 
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Theil (1)=(1/n) i
n(yi/)log(yi/),    c=1 

Theil (0)=(1/n) log(/yi),     c=0 

the differences between the result with c=0 (mean logarithmic deviation) and c=2 (half 

the coefficient of variation squared) are clearly related to the changes shown in Figure 3. 

When c=0, the index weighs more the differences between incomes in the lower tail of 

the distribution, and a very marked growth was observed in the lower income percentiles. 

When c=2, changes in the upper tail of the distribution receive more weighting. As shown 

in Figure 3, the change in methodology also produces a growth in the higher income 

percentiles although lower than that of the other tail of the distribution. When the changes 

are weighted equally throughout the distribution (c = 1), the change in inequality is very 

modest and insignificant. 

Something similar happens when estimating the family of Atkinson indices giving 

different values to the parameter e:  

Atk (e)=1-(1/n) i
n(yi/)1-e1/(1-e),     e0 , e1  

Atk (e)=1-exp(1/n) i
nLn(yi/)e,    e=1 

As this parameter grows, more weight is given to income transfers at the lower tail of the 

distribution and less to those at the upper tail. This greater sensitivity to what happens in 

the upper part of the distribution means that when taking high values of the parameter 

(e=2)  the result is a very large increase in inequality with administrative data. By contrast, 

when low values are taken (e = 0.5) inequality decreases. 

The availability of different ECV waves with administrative data and with the traditional 

interview method allows us to assess not only how inequality changes in a given year, but 

also what differences there are in the trend of inequality. The two types of distributions 

can be analyzed between 2009 – the first year with administrative microdata – and 2014 

– the last date in which the INE continued to collect income through the interview method. 

 

FIGURE 4 

 

The period for which data exist corresponds to part of the most critical phase of the last 

economic crisis. Between 2009 and 2014, the per capita net national disposable income 
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fell in real terms by more than 11%. In the same period, the unemployment rate raised 

from 18% to 24% (Labour Force Survey). Figure 4 shows that, regardless of the indicator 

chosen to measure inequality and the income data source, inequality increased during the 

period considered. This growth is particularly noteworthy in the Atkinson index with the 

highest parameter of aversion to inequality (e = 2) and can be also appreciated in the Gini 

index. 

A second relevant result – common in the set of estimated indicators – is that the growth 

of inequality during this period is considerably greater when using interview than 

administrative information. Thus, while the rate of growth of the Gini index during the 

years considered is 6% with administrative data, it is almost double (11.3%) with survey 

data. Something similar happens with the Theil (c=1) or the Atkinson (e=0.5). The widest 

differences arise with the Atkinson index (e=2) and the Theil (c=2), that is, with the 

indicators most sensitive to aversion to inequality and to changes in the upper tail of the 

distribution. It follows therefore that one of the most important consequences of the 

change in the income collection method is a smaller increase in inequality with 

administrative with respect to survey data. 

  

5. EFFECTS ON INEQUALITY BY INCOME SOURCES 

  

The replacement of income data collected by interviews with administrative data can 

affect the estimated levels of inequality through different channels. One of the most direct 

is through the different impact that the change in each income source may have had on 

income percentiles. Although in some of the main income sources the changes seem 

relatively modest on average, it is possible that the dispersion in their corresponding 

distributions changes when moving to administrative data. In the case of capital income 

or taxes and social contributions, the magnitude of the difference observed with the two 

criteria of income collection makes it easy to predict also a very different magnitude of 

inequality in each source. 

 

The better coverage of capital income could be determinant of an inequality level in 

disposable income different from that which results from the traditional method of 

collecting income. Some recent studies have emphasized the role that the increase in the 

percentage of capital income can have over inequality in the distribution of disposable 
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income (Milanovic, 2017; Bengtsson and Waldenström, 2018). A better coverage of these 

incomes should also imply a different level of inequality in their distribution and the same 

could happen with other sources of household income. 

 

FIGURE 5 

 

Figure 5a shows the density functions of labor income in each household with the two 

criteria for collecting income. Although the difference in average labor income when 

changing criteria was relatively small (17.4%) compared to other sources of income, some 

significant changes come up in the two resulting distributions. One of the most prominent 

is some displacement to the left of the labor income distribution with administrative 

records, indicative of a greater number of low-wage earners with this criterion. Second, 

the bimodal profile of the distribution with administrative data stands out, with the first 

of these values probably reflecting earnings corresponding to part-time employment. The 

highest modal value in the case of labor income with survey data evidences the greatest 

weight in the distribution of average wages. Finally, as in the case of the net disposable 

income, administrative data have greater coverage of high-wage workers. 

 

The differences are much less marked in the densities of the self-employment income 

(Figure 5b). The profile of the two distributions is very similar, with the only nuance of 

the slightly more inward shape of these incomes with survey data in the decreasing section 

from the modal value. Noticeably, these incomes are usually underreported in the 

household surveys, but, at the same time, they receive in Spain a specific treatment in the 

personal income tax, which means that, in many cases, the taxable income differs 

markedly from the income actually received. This is the only case in which the average 

income is lower with administrative than survey data. This difference between the two 

types of variables occurs, above all, in the section between 18,000 and 30,000 euros, 

always in terms of equivalent income. This gap is also observed in higher incomes until 

the upper tail of the distribution begins to stretch, given the better coverage of the highest 

self-employment incomes in administrative data. 

 

Regarding capital income, we have already noticed that this is the income source with the 

highest change in mean from survey to administrative data. Moreover, as Figure 5c 

shows, there is a much higher proportion of households with very low capital income in 
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the distribution with survey than with administrative data. The average and maximum 

values of this source are very different in each case, almost doubling that of the data 

obtained through interviews. 

 

The distributions of the taxes variable do not differ substantially with the two 

methodologies (Figure 5d). The large increase in the average value of taxes when these 

are collected with data from the Tax Agency is mainly concentrated in the largest number 

of households that now happens to be in the income bracket between 5,000 and 12,000 

euros. The distribution moves to the right when moving from survey to administrative 

data, and there is also a greater concentration of taxes paid around the modal value of 

survey data. 

 

Finally, cash benefits present a somewhat different profile to the previous ones (Figure 

5e). In both distributions there is a greater concentration of this type of income around 

low values. However, although the difference is small, there are two characteristics that 

make the corresponding densities somewhat different. First, although the modal value 

with interview and administrative data is similar, the number of households accumulated 

around this value is clearly lower with administrative data. Second, from this value there 

is a greater number of households for each income level in the case of administrative data 

except in the far right of the distribution, collecting the survey data unusually high 

benefits. 

 

The different shapes observed in the distributions of each income source allow us to 

anticipate that the indicators that summarize inequality in each case will differ as 

measured by the traditional method of interview or using administrative data. Table 3 

shows these indicators and the difference between the two methods, also indicating the 

statistical significance of the latter. A first result is the different sign and significance of 

the Gini index by income sources, as compared to other inequality indexes. In particular, 

according to Gini index, in most income sources the methodological change gives rise to 

a more equal distribution, although the differences – except in capital income and cash 

benefits – are not significant. The only exception is taxes, whose internal inequality must 

be interpreted inversely to the other sources. The different results for the Gini index could 

be explained – as it was deduced from the analysis of the density functions of each source 

– by the fact that an important part of the changes that occur in the different incomes with 
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administrative data are much larger in the tails of each distribution than in middle 

incomes. 

 

TABLE 3 

 

This result is also found with the Atkinson index with the parameter that represents a 

lower aversion to inequality, but not with the Theil index when all incomes receive a 

similar weighting. It is precisely in this indicator that the effect of the methodological 

change on inequality in all income sources is larger. 

 

Among the different income sources analyzed, the most important changes are those 

affecting capital and self-employment income, being smaller – although depending on 

each indicator – the changes in the inequality of labor income. Given the greater weight 

of the latter on total household income, it is normal that the effect on inequality of 

disposable income is small in most of the indicators. On the other hand, the impact of the 

greater coverage of capital income produces in general a reduction in inequality in this 

source. The opposite occurs with self-employment income with almost all indicators 

showing higher inequality levels. 

 

If the results corresponding to the effect of the methodological change on inequality in 

the different sources are compared with the previous results on the change in their average 

levels, there seems to be a certain relationship. In general terms, the income sources in 

which levels change the most when modifying the method of income collection –capital 

income and taxes –  are also those in which moving to administrative data has the greatest 

impact on inequality. 

   

6. EFFECTS ON THE STRUCTURE OF INEQUALITY AND DEPENDENCES 

BETWEEN INCOME SOURCES  

 

A very important dimension of inequality that may be affected when moving from survey 

to administrative data is the structure of inequality by income sources. The inequality of 

the distribution of disposable income is the result of the inequality in the different sources 

of income, the weight in the total income of each source and the correlations between 

them. As mentioned above, some studies have examined how changing from survey to 
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administrative data can affect the first two components. Far less research has examined 

how the different methods of collecting income can yield different results in terms of the 

dependences between the income sources.  

 

In recent years, increasingly robust procedures have been developed for the analysis of 

inequality by income sources, taking into account both changes in the structure of the 

population and those related to its various components. The decomposition of inequality 

by income sources has as its main reference the pioneering contributions of Shorrocks 

(1982, a, b). His works were based on inequality at a fixed moment in time. Jenkins (1995) 

generalized this analysis to decompose trends. 

 

Recent studies have expanded the decomposition method through two extensions. One 

has been to consider a wider variety of inequality indicators, and another one is the 

combination in a single method of analysis of changes in individual characteristics and 

changes in income sources and their dependences. The pioneering contribution was 

Dinardo et al. (1996), which was further developed in the field of inequality of disposable 

income by Daly and Valleta (2006). It is a structural method, in which the contribution of 

each component is identified through a counterfactual. They compare the distribution 

with the observable characteristics in the present moment and the one that would exist if 

those characteristics had not changed over time. The major criticism that this approach 

has received is that the results can be very sensitive to the specification of the model 

(Cowell and Fiorio, 2011), being also a very limited approximation to identify the 

interrelations between income sources. 

 

In our specific case, the analysis is markedly simplified because – being the same 

individuals and households –, there is no change in the characteristics and we can focus 

on the other two types of effects. In our approach to the change produced by the 

administrative data in the structure of inequality, we will combine two type of analysis 

that try to overcome the limits of the cited approaches. First, as proposed by Larrimore 

(2004), we create a counterfactual that maintains the order of the initial distribution of 

income – survey data – to determine how the changes in the marginal distributions of 

each income source, when moving to administrative data, affect the differences in the 

distribution of disposable income. The main limitation of this approach is that it does not 

explicitly quantify the interrelations between the different income sources. For this 
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reason, in a second analysis we evaluate the change in dependences between income 

sources through copula functions. 

 

Let X(i) denote the total income of individual i in the initial distribution with survey data 

and let us assume that it can be represented as the sum of the incomes obtained from each 

source, fki, with k=1,…,d, i.e.  

 

X(i) = f1i + f2i +…+ fdi 

 

To estimate the impact of the change in the distribution of the first income source on the 

inequality in disposable income, the income of that source with survey data ( f1i ) can be 

replaced for each individual by the income of that same source with administrative data 

(f’1i ), that is: 

 

X(i)’ = f’1i + f2i +…+ fdi 

  

The difference between the inequality with the initial distribution and this simulated 

distribution can be interpreted as the contribution of each source to inequality.  However, 

the sum of these contributions is not 100%, since we should add the effect of the 

dependences between income sources. 

 

FIGURE 6 

 

Figure 6 shows the change in the contribution to inequality in disposable income when 

replacing survey by administrative data in the different sources. The contribution of each 

source varies according to the indicator taken as a reference. Except in the case of the 

Atkinson Index with e=2, in all other indices the greatest change in the contribution to 

inequality is that of labor income. With that index, taxes are the source with the largest 

change in its contribution to inequality. In any case, this latter effect is largely dependent 

on inequality aversion. The impact of replacing taxes with administrative data has a 

negative effect on inequality with parameters of aversion less than 1, and the impact is 

very small when the parameter equals one.  
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The effects of capital income are similar in terms of the sign – although with different 

size – to those of labor income. In almost all indices, the shift from survey to 

administrative data noticeably increases the contribution of labor income to inequality, 

except in the case again of the Atkinson Index with the highest aversion to inequality. 

The effect of the changes in benefits and self-employment income are not very relevant 

in quantitative terms. 

 

A last and very important dimension of inequality that could be affected by the change of 

criteria in the method for collecting income data is the structure of dependences between 

income sources. As mentioned above, inequality in disposable income is the result of the 

inequality in the different income sources, the relative weight of each source in total 

income, and the interactions between them. Therefore, a key issue is identifying, as 

accurately as possible, the effect on the dependences between income sources. However, 

this issue is often forgotten. In this paper, we address the problem of both measuring the 

dependence between the different income sources and analyzing whether using 

administrative or survey data could affect such dependence. As this is a multidimensional 

problem with more than two variables involved and those variables are non-normally 

distributed, we need measures of dependence that capture other types of relationships 

beyond linear correlation.  

 

In this setting, copulas become an essential tool, as they enable building scaled-free 

measures of multivariate dependence that generalize some well-known coefficients of 

association like the Spearman's rho. Since there are few applications of this approach in 

welfare economics (see Decancq (2014) and Pérez and Prieto (2015, 2016a)), we first 

review some preliminary results concerning copulas and dependence.  

 

A d-dimensional copula is a multivariate distribution function C:Id → I, whose one-

dimensional margins are uniform on I, where I = [0,1]. The Sklar’s theorem ensures that 

given d continuous random variables, X=(X1,…,Xd), with joint cumulative distribution 

function F and marginals F1,…,Fd, respectively, there exist a unique copula C such that  

 

F(x1,…,xd) = C( F1(x1) , … , Fd(xd) )  for all (x1,…,xd) ∈ Rd   1 
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Hence, for a given real vector u = (u1,…,ud)  Id, the value C(u) represents the proportion 

of individuals in the population with positions outranked by u – i.e., with a lower or equal 

position than u in all dimensions. For instance, C(0.1,…,0.1) will represent the probability 

that a randomly selected individual is simultaneously in the first decile (“low ranked”) in 

all dimensions. By contrast, the survival function 𝐶̅ associated with the copula C, is 

defined as  

 

𝐶̅(u) = p(U1 > u1,….,Ud > ud),  

 

where Ui=Fi(Xi), i=1,…,d, are uniform U(0,1) random variables with joint distribution C. 

Hence, the function 𝐶̅ represents the proportion of individuals in the population with 

positions higher than u in all dimensions. That is, 𝐶̅(0.9,…,0.9) will represent the 

probability that a randomly selected individual is simultaneously in the 9th decile (“top 

ranked”) in all dimensions. In general, 𝐶̅ is not a copula. If the variables X1,..,Xd are 

independent, their copula will be the independent copula Π, defined as Π(u)=u1.ud. 

 

The essential feature of the copula approach is that it allows us to decompose the joint 

distribution of X into their one-dimensional marginal distribution functions and the 

dependence structure between them, which is captured by the copula, as stated in 1. In 

terms of the discussion on the possible effects of the different methods of data collection, 

the key question is whether this dependence differs with the two types of data. Given that 

we deal with five income sources, measures of multivariate dependence are needed to test 

whether the two types of data yield similar results in terms of the relationships between 

the different sources.  

 

There are several copula-based measures of multivariate dependence proposed in the 

literature (see Schmid et al. (2010)). In this paper, we focus on three multivariate 

extensions of the bivariate Spearman’s rho based on orthant dependence concepts. 

Roughly speaking, measuring lower (upper) orthant dependence amounts to compare how 

likely it is that the variables X1,…,Xd take simultaneously small (large) values as 

compared to how likely this would be were the variables independent.8  

 

                                                           
8 For a detailed description of these concepts see Nelsen (1996, 2006). 
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The first copula-based multivariate extension of Spearman’s rho we consider is due to 

Wolff (1980) and Nelsen (1996) and it is defined as follows: 

 

𝜌d
− = 

(𝑑+1)

2𝑑−(𝑑+1)
∫ [𝐶(𝒖) − 𝛱(𝒖)]d𝒖
𝑰𝑑

 .     2 

 

Hence, 𝜌d
− can be regarded as a measure of average lower orthant dependence, as it 

measures, to some extent, the rescaled “average distance” between our multivariate data 

(represented by its copula C) and independence (copula ) in the lower orthant.  

 

In a similar fashion, Nelsen (1996) defined a measure 𝜌d
+ of average upper orthant 

dependence as follows: 

 

𝜌d
+ = 

(𝑑+1)

2𝑑−(𝑑+1)
∫ [𝐶̅(𝒖) − 𝛱(𝒖)]d𝒖
𝑰𝑑

    3 

 

This measure can be regarded as a rescaled “average distance” between C̅ – representing 

the behaviour of our data in the upper orthant – and Π̅ – representing independence in 

such orthant. 

 

The third multivariate version of Spearman’s rho, due to Nelsen (2002), is the average of 

the two generalizations described above, namely: 

 

𝜌𝑑 =  
1

2
(𝜌𝑑

− + 𝜌𝑑
+)     4 

 

Positive values of the three coefficients in [2]-[4] indicate positive lower orthant, upper 

orthant and orthant dependence, respectively. Furthermore, when the components of X 

are independent (C=), the three coefficients become zero, whereas in the case of 

maximal dependence, i.e. the outcomes in all the variables X1,…,Xd are ordered in the 

same way, they all reach their maximum value, 1. A lower bound for the three of them is 

[2d – (d + 1)!]/{d![2d – (d + 1)]}; see Nelsen (1996). For our purposes, the coefficients 𝜌𝑑
− 

and 𝜌d
+ are preferable, as they can reveal some forms of dependences that 𝜌𝑑 fails to 

detect; see Example 2 in Nelsen (1996). Noticeably, in the bivariate case (d=2), the three 

coefficients above become the well-known bivariate Spearman’s rho. In practice, the 
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copula C is unknown and the coefficients in [2]-[4] must be estimated from the data by 

using the empirical copula. Pérez and Prieto-Alaiz (2016b) propose feasible 

nonparametric estimators of 𝜌𝑑
− and 𝜌𝑑

+ that are easy to compute and share good 

asymptotic properties. The average of these estimators could be used to estimate 𝜌𝑑. 

 

The discussion so far is based on the assumption that the univariate margins are 

continuous. Without this assumption, the underlying copula C in (1) is no longer unique, 

although it is uniquely determined on RanF1 … RanFd. Accordingly, the coefficients 

in equations 2-4 should be modified when dealing with possibly non-continuous 

random variables; see, for instance, the proposals in Quessy (2009) and Mesfioui and 

Quessy (2010) and their corresponding estimators in Genest et al. (2013). 

 

Next, we apply the measures discussed above to the analysis of the dependence between 

the different income sources in order to check whether the degree of dependence change 

depending on the type of data used. To ease the computation and interpretation of the 

results, the income sources have been aggregated into three components (d=3): labor 

income (labor income plus self-employment income), capital income and the net results 

of taxes and transfers (taxes minus cash transfers). Since our variables are not strictly 

continuous, to compute the empirical versions of the coefficients 2-4, we use the 

estimators proposed by Genest et al. (2013) for d=3. In order to compute the standard 

errors of these estimators, we approximate their bootstrap distribution by resampling with 

replacement repeatedly from the original data (1,000 subsamples). Then, on the basis of 

the bootstrap distributions obtained, we test whether the difference between survey and 

administrative data is significant. Table 4 depicts the results.  

 

TABLE 4 

 

Several conclusions emerge from this table. First, regardless of the coefficient used, there 

is a positive and significant multivariate dependence between the income sources, both in 

survey and administrative data. Second, regardless the data source, the largest coefficient 

of multivariate dependence is 𝜌𝑑
+. This means that high values of the three income 

components tend to occur together – i.e., people with high labor income are more likely 

to have simultaneously high capital income and few net public transfers. Moreover, this 
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simultaneous occurrence of “good” rankings in the three components is more likely with 

administrative than with survey data. By contrast, the coefficient 𝜌𝑑
− is significantly 

greater with survey than with administrative data. This means that small levels of the 

three income components (labor, capital, tax-public transfers) tend to occur together more 

likely with survey than with administrative data. Noticeable, there is no significant 

difference between the coefficient  with the two types of data. This results underlines 

the caveats of only using this coefficient since, as commented before, it could mask some 

type of dependences that are only captured by 𝜌𝑑
− and 𝜌𝑑

+. 

 

In general terms, it can be said that both methods of data collection also produce 

significant differences in the observed dependences between income sources. Therefore, 

moving from one method to another affects not only the level of inequality and its changes 

over time, but also the very structure of inequality.  

 

7. CONCLUSIONS 

 

The past decade has witnessed an intense debate over the trends and consequences of 

inequality. The importance of its analysis requires having robust datasets to understand 

its changes, determinants and implications. Almost all countries have datasets that allow 

for a sufficiently comprehensive picture of the evolution of inequality in the long term. 

In most cases, these are household surveys that provide detailed data on the different 

income sources that each individual receives. However, survey income data are affected 

by different types of problems – non-response, measurement error, limited representation 

of top incomes – that may limit their ability to provide accurate diagnoses for decision 

making. 

 

Due to these limitations, some countries are replacing in the surveys the income data 

collected through interviews by administrative data. Such a process can have important 

effects on the measurement of inequality and, therefore, on the optimal design of 

redistributive policies. It is necessary to evaluate not only how it affects the general 

indicators but also the inequality by income sources and the structure of dependences 

between these sources. 
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The change in the method of income collection in the main household survey in Spain 

(ECV) – moving from survey to administrative data – has made it possible to evaluate the 

possible impact that this type of changes has on income inequality and its structure. A 

great advantage compared to previous studies is that both types of data are available 

simultaneously for the same individuals and households. In this paper we have reviewed 

in depth some of the effects that this methodological change has had on inequality and its 

structure by income sources. 

 

The general result is that moving to administrative data has effects on the levels of the 

different income variables included in the survey, the magnitude of inequality in the 

distribution of income, and its structure by income sources. Our analysis confirms, first, 

a significant growth of household disposable income with administrative data. This 

increase is especially important in capital income, with a notable improvement in a source 

where levels of under-reporting in survey data are usually very high. The opposite occurs 

in self-employment income, reflecting the comparison between survey and tax data the 

special treatment these incomes receive in the personal income tax. 

 

A second contribution has been to identify the population categories that show greater 

differences depending on the method of income collecting. While there are some little 

differentiating characteristics – gender, marital status or educational level – there are 

others associated with a higher probability of income under-reporting in surveys. This is 

the case, among others, of age, the type of household, nationality, and unemployment 

status, for which the administrative data substantially correct the lack of coverage of the 

surveys. 

 

One of the fundamental questions that the paper addresses is whether the change in the 

method of income collection affects the measurement of inequality. It can be stated that 

the difference in income according to one or another criterion is not independent of the 

level of household income. The incomes of the tails of the distribution increase 

considerably more – especially in the lower part of the distribution – than those of the 

middle strata. On the other hand, inequality indicators are significantly lower with 

administrative data. This result is reversed only in those indicators assigning much more 

weight to the upper tail of the distribution. 
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A fourth contribution is the identification of those income sources that are most sensitive 

to the use of administrative data in terms of their corresponding inequality levels. Turning 

to administrative data generally leads to more equal distributions in each income source. 

One of the most relevant effects of using administrative data is the modification of the 

structure of inequality, rising above all the contribution of capital income, cash benefits 

and taxes. 

 

Lastly, we have shown that there are also significant differences in the structure of 

dependence between income sources depending on which income data source we use. In 

particular, moving from survey to administrative data conveys both a significant increase 

in the upper orthant dependence and a significant decrease in the lower orthant 

dependence. This is a key issue in the design of optimal redistributive policies, as it affects 

the type of relationships that determine the effectiveness of public intervention. 
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Figure 1. Change (%) in mean incomes when moving from survey to  

administrative data 

 

  

Figure 2. Distribution of disposable income, 2014  
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Figure 3. Growth (%) in the average levels of disposable income by percentiles 

when moving to administrative data, ECV 2014 

 

  

Figure 4. Inequality change (%), 2009-2014 
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Figure 5. Distribution of income sources, 2014  
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Figure 6. Change (%) in the contribution to inequality of income sources when 

moving to administrative data 
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Table 1. Probability of reporting lower income in survey data 

 

Higher than the average  

 

1.5 times higher than the 

average  

Twice as high as the average 

 

 Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Gender       

Female -0.025 0.024 -0.002 0.028 0.022 0,035 

Age      

25-35 -0.185*** 0.051 -0.318*** 0.059 -0.355** 0,073 

35-45 -0.077 0.056 -0.171** 0.064 -0.208** 0,077 

45-55 -0.068 0.058 -0.131** 0.065 -0.151* 0,079 

55-65 0.002 0.064 -0.107 0.072 -0.067 0,088 

65-75 -0.135* 0.080 -0.194** 0.094 -0.294** 0,126 

75-85 -0.190** 0.087 -0.255** 0.104 -0.274** 0,140 

>85 -0.158 0.105 -0.210* 0.126 -0.154 0,170 

Marital status       

Married 0.066* 0.038 0.099** 0.043 0.063 0,054 

Separated 0.195** 0.079 0.191** 0.088 0.218** 0,102 

Widowed -0.076 0.061 -0.084 0.074 -0.235** 0,102 

Divorced 0.110 0.062 0.098 0.070 0.107 0,082 

Household type      

Single person, male 30-64 -0.578** 0.224 -0.592** 0.231 -0.788*** 0.235 

Single person, male > 65  -0.780*** 0.243 -1.066*** 0.271 -1.583*** 0.402 

Single person, female < 30  -0.155 0.344 -0.224 0.358 -0.223 0.360 

Single person, female 30-64  -0.488** 0.226 -0.487** 0.233 -0.659** 0.238 

Single person, female > 65  -0.472** 0.227 -0.655** 0.238 -0.860*** 0.255 

Couple no children, at least one > 65 -0.704**** 0.218 -0.859*** 0.226 -1.286*** 0.234 

Couple no children, both < 65  -0.701*** 0.216 -0.767*** 0.222 -1.050*** 0.224 
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Other households without children  -0.795*** 0.215 -1.033*** 0.221 -1.348*** 0.224 

One adult, at least 1 child  -0.283 0.223 -0.342 0.229 -0.579** 0.233 

Couple, 1 child -0.739*** 0.216 -0.876*** 0.222 -1.075*** 0.225 

Couple, 2 children  -0.688*** 0.216 -0.831*** 0.222 -1.054*** 0.225 

Couple,  3 children  -0.597** 0.222 -0.949*** 0.232 -1.289*** 0.242 

Other households with children -0.853*** 0.216 -0.989*** 0.222 -1.177*** 0.224 

Country of birth       

Rest of EU-27 -0.183* 0.099 -0.037 0.104 -0.040 0.125 

Other countries 0.101 0.063 0.154** 0.069 0.164** 0.080 

Educational attainment      

Primary education 0,038 0,044 -0,041 0,053 -0,034 0,071 

Lower secondary education 0,045 0,045 -0,003 0,053 -0,034 0,071 

Upper secondary education 0,008 0,052 -0,026 0,060 -0,069 0,079 

Occupationally programmes 0,081 0,064 0,069 0,073 -0,032 0,094 

Post-secondary non-tertiary education 0,089 0,328 0,277 0,330 0,304 0,386 

Tertiary education 0,120** 0,047 0,081 0,055 0,004 0,074 

Labor status      

Unemployed 0,269*** 0,032 0,215*** 0,036 0,208*** 0,044 

Retired 0,055 0,047 -0,047 0,056 -0,217** 0,078 

Other inactive person 0,145*** 0,035 0,054 0,041 0,034 0,050 

Healt status      

Good -0.055* 0.031 -0.074** 0.035 -0.056 0.044 

Fair -0.006 0.039 -0.022 0.045 0.005 0.056 

Bad -0.065 0.054 -0.085 0.063 -0.017 0.081 

Very bad -0.104 0.085 -0.196* 0.107 -0.203 0.151 
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Housing tenure       

Owner paying mortgage -0.127*** 0.029 -0.094** 0,033 -0,127** 0,042 

Rented at market rate -0.154*** 0.046 -0.088* 0,051 0,076 0,059 

Rented at a reduced rate -0.077 0.071 -0.026 0,081 0,066 0,097 

Free of charge accomodation 0.032 0.046 0.028 0,053 0,139** 0,062 

Constant -0.587** 0.221 -0.559** 0,229 -0,572** 0,236 

Number of obs 26095 26095 26095 

Log likelihood -8304 -5942 -3489 

Reference: male, <25 years old, single, single person < 30, Spanish nationality, lower than primary education, employed, very god health status,   

outright owner 
***Significant at 1%, ** significant at 5%, * significant at 10%. 
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Table 2. Inequality indicators 

 Survey data  

Administrative 

data 

Change (%) 

Gini 0.346 0.339 -2.0** 

Theil (c=0) 0.234 0.219 -6.4** 

Theil (c=1) 0.191 0.190 -0.3 

Theil (c=2) 0.210 0.220 4.9* 

Atkinson (e=0,5) 0.106 0.099 -6.9** 

Atkinson (e=1) 0.208 0.196 -5.7** 

Atkinson (e=2) 0.766 0.878 14.6* 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 3. Inequality indicators by income sources 

 

 Survey data  

Administrative 

data 

Change (%) 

Gini    

Labor income 0,588 0,585 -0,5 

Self-employment income 0,959 0,953 -0,6 

Capital income 0,948 0,872 -8,0*** 

Taxes 0,688 0,693 0,7 

Cash benefits 0,675 0,658 -2,4*** 

Theil (c=0)    

Labor income 0,361 0,496 37,4*** 

Self-employment income 0,452 0,991 119,0*** 

Capital income 1,765 1,735 -1,7 

Taxes 0,582 0,931 60,1*** 

Cash benefits 0,483 0,623 29,0*** 

Theil (c=1)    

Labor income 0,271 0,341 25,9*** 

Self-employment income 0,365 0,606 66,2*** 

Capital income 1,167 1,273 9,0*** 

Taxes 0,445 0,634 42,3*** 

Cash benefits 0,365 0,438 19,9*** 

Theil(c=2)    

Labor income 0,640 0,669 4,6* 

Self-employment income 6,827 7,028 2,9 

Capital income 13,76 6,175 -55,1*** 

Taxes 1,058 1,373 29,7*** 

Cash benefits 1,000 0,989 -1,1 

Atkinson (e=0,5)    

Labor income 0,407 0,381 -6,2*** 

Self-employment income 0,893 0,865 -3,1*** 

Capital income 0,896 0,734 -18,1*** 

Taxes 0,335 0,348 3,9** 

Cash benefits 0,504 0,463 -8,2*** 

Atkinson (e=1)    

Labor income 0,303 0,391 29,0*** 

Self-employment income 0,364 0,629 72,8*** 

Capital income 0,829 0,824 -0,6 

Taxes 0,441 0,606 37,4*** 

Cash benefits 0,383 0,464 21,1*** 

Atkinson (e=2)    

Labor income 0,693 0,959 38,4*** 

Self-employment income 0,852 0,982 15,3*** 

Capital income 0,984 0,976 -0,8 

Taxes 1,126 1,049 -6,8*** 

Cash benefits 0,757 0,953 26,0*** 
         ***Significant at 1%, ** significant at 5%, * significant at 10%. 

 

Table 4. Copula-based measures of orthant dependence between income sources  

 Survey data Administrative data Change (%) 

𝜌𝑑
+ 0,311*** 0,328***  5,3%*** 

𝜌𝑑
− 0,274*** 0,258*** -5,8%*** 

𝜌𝑑 0,293*** 0,293***        0,1% 
***Significant at 1%, ** significant at 5%, * significant at 10%. 


